The integrated rate laws for zero-, first-, and second-order reactions may be arranged such that they resemble the equation for a straight line, [tex]\( y = mx + b \)[/tex]:

\begin{tabular}{|c|c|c|c|}
\hline Order & Integrated Rate Law & Graph & Slope \\
\hline 0 & [tex]\([A] = -kt + [A]_0\)[/tex] & [tex]\([A] \text{ vs. } t\)[/tex] & [tex]\(-k\)[/tex] \\
\hline 1 & [tex]\(\ln [A] = -kt + \ln [A]_0\)[/tex] & [tex]\(\ln [A] \text{ vs. } t\)[/tex] & [tex]\(-k\)[/tex] \\
\hline 2 & [tex]\(\frac{1}{[A]} = kt + \frac{1}{[A]_0}\)[/tex] & [tex]\(\frac{1}{[A]} \text{ vs. } t\)[/tex] & [tex]\(k\)[/tex] \\
\hline
\end{tabular}

Part A

The reactant concentration in a zero-order reaction was 0.100 M after 110 s and [tex]\(3.50 \times 10^{-2}\)[/tex] M after 395 s. What is the rate constant for this reaction?

Express your answer with the appropriate units. Indicate the multiplication of units, as necessary, explicitly either with a multiplication dot or a dash.

[tex]\(\boxed{\phantom{k = \text{Value Units}}}\)[/tex]



Answer :

To determine the rate constant [tex]\( k \)[/tex] for a zero-order reaction, we use the integrated rate law for zero-order reactions:

[tex]\[ [A]_t = -kt + [A]_0 \][/tex]

Where:
- [tex]\([A]_t\)[/tex] is the concentration of the reactant at time [tex]\( t \)[/tex]
- [tex]\( k \)[/tex] is the rate constant
- [tex]\( t \)[/tex] is the time
- [tex]\([A]_0\)[/tex] is the initial concentration of the reactant

Given:
- Initial concentration [tex]\([A]_0\)[/tex] = 0.100 M at [tex]\( t = 110 \)[/tex] s
- Concentration [tex]\([A]_t\)[/tex] = 3.50 \times 10^{-2} \) M at [tex]\( t = 395 \)[/tex] s

We need to find the change in concentration and change in time first.

1. Calculate the change in concentration ([tex]\(\Delta [A]\)[/tex]):

[tex]\[ \Delta [A] = [A]_0 - [A]_t \][/tex]
[tex]\[ \Delta [A] = 0.100 \, \text{M} - 3.50 \times 10^{-2} \, \text{M} \][/tex]
[tex]\[ \Delta [A] = 0.100 \, \text{M} - 0.035 \, \text{M} \][/tex]
[tex]\[ \Delta [A] = 0.065 \, \text{M} \][/tex]

2. Calculate the change in time ([tex]\(\Delta t\)[/tex]):

[tex]\[ \Delta t = t_2 - t_1 \][/tex]
[tex]\[ \Delta t = 395 \, \text{s} - 110 \, \text{s} \][/tex]
[tex]\[ \Delta t = 285 \, \text{s} \][/tex]

3. Now, we use the formula rearranged for the rate constant ([tex]\( k \)[/tex]):

[tex]\[ k = \frac{\Delta [A]}{\Delta t} \][/tex]

Substitute the values:

[tex]\[ k = \frac{0.065 \, \text{M}}{285 \, \text{s}} \][/tex]

Perform the division to find [tex]\( k \)[/tex]:

[tex]\[ k \approx 0.000228 \, \text{M/s} \][/tex]

Therefore, the rate constant for the reaction is:

[tex]\[ k = 0.000228 \, \text{M} \cdot \text{s}^{-1} \][/tex]

Make sure to include the appropriate units to indicate the multiplication explicitly:

[tex]\[ k = 0.000228 \, \text{M} \cdot \text{s}^{-1} \][/tex]

So the final answer is:

[tex]\[ k = 0.000228 \, \text{M} \cdot \text{s}^{-1} \][/tex]