If [tex]$2x - 3y = 3$[/tex], what is the value of [tex]\frac{8^y}{4^x}[/tex]?

A) [tex]\frac{1}{8}[/tex]
B) 2
C) 6
D) 8



Answer :

To find the value of [tex]\(\frac{8^y}{4^x}\)[/tex] given the equation [tex]\(2x - 3y = 3\)[/tex], follow these steps:

1. Express [tex]\(y\)[/tex] in terms of [tex]\(x\)[/tex]:
Given the equation:
[tex]\[ 2x - 3y = 3, \][/tex]
we solve for [tex]\(y\)[/tex]:
[tex]\[ 2x - 3y = 3 \quad \Rightarrow \quad -3y = 3 - 2x \quad \Rightarrow \quad y = \frac{2x - 3}{3}. \][/tex]

2. Substitute [tex]\(y\)[/tex] into [tex]\(\frac{8^y}{4^x}\)[/tex]:
We know:
[tex]\[ y = \frac{2x - 3}{3}. \][/tex]
First, recall the properties of exponents:
[tex]\[ 8 = 2^3 \quad \text{and} \quad 4 = 2^2. \][/tex]
So,
[tex]\[ 8^y = (2^3)^y = 2^{3y} \quad \text{and} \quad 4^x = (2^2)^x = 2^{2x}. \][/tex]
Thus,
[tex]\[ \frac{8^y}{4^x} = \frac{2^{3y}}{2^{2x}} = 2^{3y - 2x}. \][/tex]

3. Substitute [tex]\(y = \frac{2x - 3}{3}\)[/tex] into the exponent:
Substitute [tex]\(y\)[/tex] in [tex]\(2^{3y - 2x}\)[/tex]:
[tex]\[ 3y = 3 \left(\frac{2x - 3}{3}\right) = 2x - 3. \][/tex]
Therefore:
[tex]\[ 3y - 2x = (2x - 3) - 2x = -3. \][/tex]
Hence,
[tex]\[ 2^{3y - 2x} = 2^{-3}. \][/tex]

4. Calculate the value:
Since,
[tex]\[ 2^{-3} = \frac{1}{2^3} = \frac{1}{8}. \][/tex]

Thus, the value of [tex]\(\frac{8^y}{4^x}\)[/tex] given the equation [tex]\(2x - 3y = 3\)[/tex] is [tex]\(\boxed{\frac{1}{8}}\)[/tex].