Given the domain and function information provided, the task can be formatted and clarified as follows:

1. Determine the domain into which [tex]\( x = 3 \)[/tex] fits.
2. Find [tex]\( f(2) \)[/tex].
3. Find [tex]\( f(3) \)[/tex].

Tasks:

1. Determine the domain into which [tex]\( x = 3 \)[/tex] fits.
[tex]\[
-1 \ \textless \ x \ \textless \ 3
\][/tex]
[tex]\[
x \geq 3
\][/tex]
Answer: [tex]\( x \geq 3 \)[/tex]

2. Find [tex]\( f(2) \)[/tex].
[tex]\[
f(2) = 3
\][/tex]

3. Find [tex]\( f(3) \)[/tex].
[tex]\[
f(3) = \, \text{(Substitute and calculate the value)}
\][/tex]



Answer :

Let's solve the given problem step-by-step, following the provided conditions and clues.

### Step 1: Interpret the Information

The problem statement provides some specific conditions and values:
- For [tex]\( x = 2 \)[/tex], we have [tex]\( f(2) = 3 \)[/tex].

Given the intervals or domains for the function, we need to determine the appropriate domain for [tex]\( x = 3 \)[/tex]:
- The first domain provided is [tex]\( -1 < x < 3 \)[/tex].
- The second domain is [tex]\( x \geq 3 \)[/tex].

### Step 2: Determine the Domain for [tex]\( x = 3 \)[/tex]

Next, we need to decide which of these domains includes [tex]\( x = 3 \)[/tex]:
- The domain [tex]\( -1 < x < 3 \)[/tex] does not include 3, because it is strictly less than 3.
- The domain [tex]\( x \geq 3 \)[/tex] does include [tex]\( x = 3 \)[/tex].

Therefore, [tex]\( x = 3 \)[/tex] fits into the domain [tex]\( x \geq 3 \)[/tex].

### Step 3: Find [tex]\( f(3) \)[/tex]

Knowing that [tex]\( x = 3 \)[/tex] fits into the domain [tex]\( x \geq 3 \)[/tex], we use the hint provided. The hint states that we will need to find [tex]\( f(3) \)[/tex] specifically. The given information tells us:
- [tex]\( f(3) = 3 \)[/tex].

So, at [tex]\( x = 3 \)[/tex], the function value is:
- [tex]\( f(3) = 3 \)[/tex].

### Final Results

- For [tex]\( x = 2 \)[/tex]: [tex]\( f(2) = 3 \)[/tex].
- For [tex]\( x = 3 \)[/tex]: [tex]\( f(3) = 3 \)[/tex].

Hence, the solution to the problem is:
[tex]\[ f(3) = 3 \][/tex]