Answer :
Certainly! Let's solve the equation step-by-step:
[tex]\[ (2x - 3) - (x + 12) = 0 \][/tex]
1. Distribute the negative sign to the terms inside the parentheses:
[tex]\[ = (2x - 3) - x - 12 = 0 \][/tex]
This changes the sign of each term inside the parentheses that follows the negative sign.
2. Combine the like terms:
- First, combine the [tex]\(x\)[/tex] terms:
[tex]\[ 2x - x = x \][/tex]
- Then, combine the constant terms:
[tex]\[ -3 - 12 = -15 \][/tex]
So, the equation simplifies to:
[tex]\[ x - 15 = 0 \][/tex]
3. Solve for [tex]\(x\)[/tex]:
- To isolate [tex]\(x\)[/tex], add 15 to both sides of the equation:
[tex]\[ x - 15 + 15 = 0 + 15 \][/tex]
Simplifying the left side, you get:
[tex]\[ x = 15 \][/tex]
Therefore, the solution to the equation [tex]\((2x - 3) - (x + 12) = 0\)[/tex] is:
[tex]\[ x = 15 \][/tex]
[tex]\[ (2x - 3) - (x + 12) = 0 \][/tex]
1. Distribute the negative sign to the terms inside the parentheses:
[tex]\[ = (2x - 3) - x - 12 = 0 \][/tex]
This changes the sign of each term inside the parentheses that follows the negative sign.
2. Combine the like terms:
- First, combine the [tex]\(x\)[/tex] terms:
[tex]\[ 2x - x = x \][/tex]
- Then, combine the constant terms:
[tex]\[ -3 - 12 = -15 \][/tex]
So, the equation simplifies to:
[tex]\[ x - 15 = 0 \][/tex]
3. Solve for [tex]\(x\)[/tex]:
- To isolate [tex]\(x\)[/tex], add 15 to both sides of the equation:
[tex]\[ x - 15 + 15 = 0 + 15 \][/tex]
Simplifying the left side, you get:
[tex]\[ x = 15 \][/tex]
Therefore, the solution to the equation [tex]\((2x - 3) - (x + 12) = 0\)[/tex] is:
[tex]\[ x = 15 \][/tex]