Use the following information to answer the next question:

[tex]\[ 5(2x^2 - 3xy + y^2 - 3) - 2x(x + 7y - 1) - 3y^2 \][/tex]

If the polynomial expression above is evaluated for [tex]\( x = -3 \)[/tex] and [tex]\( y = 4 \)[/tex], then its value is _______.



Answer :

Let's evaluate the polynomial expression:

[tex]\[ 5(2x^2 - 3xy + y^2 - 3) - 2x(x + 7y - 1) - 3y^2 \][/tex]

Step-by-step, plug in [tex]\(x = -3\)[/tex] and [tex]\(y = 4\)[/tex]:

First, evaluate the expression inside the first parentheses:

[tex]\[ 2x^2 - 3xy + y^2 - 3 \][/tex]

Substitute [tex]\(x = -3\)[/tex] and [tex]\(y = 4\)[/tex]:

[tex]\[ 2(-3)^2 - 3(-3)(4) + 4^2 - 3 \][/tex]

Calculate each term:

[tex]\[ 2(9) - 3(-12) + 16 - 3 = 18 + 36 + 16 - 3 \][/tex]

Combine the results:

[tex]\[ 18 + 36 + 16 - 3 = 67 \][/tex]

Then, multiply by 5:

[tex]\[ 5 \cdot 67 = 335 \][/tex]

Now, evaluate the second term:

[tex]\[ -2x(x + 7y - 1) \][/tex]

Substitute [tex]\(x = -3\)[/tex] and [tex]\(y = 4\)[/tex]:

[tex]\[ -2(-3)((-3) + 7(4) - 1) = -2(-3)(-3 + 28 - 1) = -2(-3)(24) \][/tex]

Simplify the multiplication:

[tex]\[ -2(-3) \cdot 24 = 6 \cdot 24 = 144 \][/tex]

Finally, evaluate the last term:

[tex]\[ -3y^2 \][/tex]

Substitute [tex]\(y = 4\)[/tex]:

[tex]\[ -3(4^2) = -3 \cdot 16 = -48 \][/tex]

Combine all the parts:

[tex]\[ 335 + 144 - 48 \][/tex]

Add the results step-by-step:

[tex]\[ 335 + 144 = 479 \][/tex]

Then subtract:

[tex]\[ 479 - 48 = 431 \][/tex]

Therefore, the value of the polynomial expression for [tex]\(x = -3\)[/tex] and [tex]\(y = 4\)[/tex] is:

[tex]\[ \boxed{431} \][/tex]