Answer :
To determine the value of [tex]\( y \)[/tex] in the relative frequency table, we need to calculate the relative frequency of a specific value from the frequency table.
Given the frequency table:
[tex]\[ \begin{array}{|c|c|c|c|} \hline & G & H & \text{Total} \\ \hline E & 12 & 11 & 23 \\ \hline F & 14 & 8 & 22 \\ \hline \text{Total} & 26 & 19 & 45 \\ \hline \end{array} \][/tex]
The total number of values (sum of all frequencies) is [tex]\( 45 \)[/tex].
We are focusing on the value 12 in cell E-G. To find its relative frequency, we use the formula:
[tex]\[ \text{Relative Frequency} = \left( \frac{\text{Frequency of the value}}{\text{Total number of values}} \right) \times 100 \][/tex]
For cell E-G:
[tex]\[ \text{Relative Frequency} = \left( \frac{12}{45} \right) \times 100 \][/tex]
This gives us:
[tex]\[ \left( \frac{12}{45} \right) \times 100 \approx 26.6667 \][/tex]
Rounding this to the nearest percent, we get:
[tex]\[ 27\% \][/tex]
Thus, the value of [tex]\( y \)[/tex] in the relative frequency table is:
[tex]\[ \boxed{27\%} \][/tex]
Given the frequency table:
[tex]\[ \begin{array}{|c|c|c|c|} \hline & G & H & \text{Total} \\ \hline E & 12 & 11 & 23 \\ \hline F & 14 & 8 & 22 \\ \hline \text{Total} & 26 & 19 & 45 \\ \hline \end{array} \][/tex]
The total number of values (sum of all frequencies) is [tex]\( 45 \)[/tex].
We are focusing on the value 12 in cell E-G. To find its relative frequency, we use the formula:
[tex]\[ \text{Relative Frequency} = \left( \frac{\text{Frequency of the value}}{\text{Total number of values}} \right) \times 100 \][/tex]
For cell E-G:
[tex]\[ \text{Relative Frequency} = \left( \frac{12}{45} \right) \times 100 \][/tex]
This gives us:
[tex]\[ \left( \frac{12}{45} \right) \times 100 \approx 26.6667 \][/tex]
Rounding this to the nearest percent, we get:
[tex]\[ 27\% \][/tex]
Thus, the value of [tex]\( y \)[/tex] in the relative frequency table is:
[tex]\[ \boxed{27\%} \][/tex]