3. What is the value of [tex]\frac{4}{11}+\frac{3}{11}-\frac{2}{11}[/tex]? Enter your response in the gridded area.

4. Contestants in a race must swim [tex]1 \frac{3}{8}[/tex] miles, then run [tex]7 \frac{7}{8}[/tex] miles. What is the total distance covered by a contestant in the race?

A. [tex]8 \frac{1}{4}[/tex] miles
B. [tex]8 \frac{8}{10}[/tex] miles
C. [tex]9 \frac{1}{8}[/tex] miles
D. [tex]9 \frac{1}{4}[/tex] miles



Answer :

To solve these problems, we will proceed step by step.

### Problem 3: Value of the Expression [tex]\(\frac{4}{11}+\frac{3}{11}-\frac{2}{11}\)[/tex]

The given expression involves three fractions with the same denominator. We can combine the numerators over the common denominator:

[tex]\[ \frac{4}{11} + \frac{3}{11} - \frac{2}{11} = \frac{4 + 3 - 2}{11} = \frac{5}{11} \][/tex]

Therefore, the value of the expression [tex]\(\frac{4}{11} + \frac{3}{11} - \frac{2}{11}\)[/tex] is [tex]\(\frac{5}{11}\)[/tex].

### Problem 4: Total Distance Covered by a Contestant in a Race

Contestants must swim [tex]\(1 \frac{3}{8}\)[/tex] miles and then run [tex]\(7 \frac{7}{8}\)[/tex] miles. To find the total distance:

1. Convert the mixed numbers to improper fractions or decimals.

- For the swimming part:
[tex]\[ 1 \frac{3}{8} = 1 + \frac{3}{8} = 1 + 0.375 = 1.375 \text{ miles} \][/tex]

- For the running part:
[tex]\[ 7 \frac{7}{8} = 7 + \frac{7}{8} = 7 + 0.875 = 7.875 \text{ miles} \][/tex]

2. Sum these distances:
[tex]\[ 1.375 \text{ miles} + 7.875 \text{ miles} = 9.25 \text{ miles} \][/tex]

The total distance covered by the contestant in the race is:

[tex]\[ 9.25 \text{ miles} \][/tex]

### Conclusion

The correct choice for the total distance is:

D. [tex]\(9 \frac{1}{4}\)[/tex] miles