Consider the function represented by the equation [tex]6c = 2p - 10[/tex]. Write the equation in function notation, where [tex]c[/tex] is the independent variable.

A. [tex]f(c) = \frac{1}{3} p + \frac{5}{3}[/tex]
B. [tex]f(c) = 3c + 5[/tex]
C. [tex]f(p) = \frac{1}{3} p + \frac{5}{3}[/tex]
D. [tex]f(p) = 3c + 5[/tex]



Answer :

Sure, let's solve this step-by-step:

1. Start with the given equation:
[tex]\[ 6c = 2p - 10 \][/tex]

2. We need to express [tex]\( p \)[/tex] in terms of [tex]\( c \)[/tex]. Begin by isolating [tex]\( p \)[/tex]:
[tex]\[ 2p = 6c + 10 \][/tex]

3. Now, solve for [tex]\( p \)[/tex]:
[tex]\[ p = \frac{6c + 10}{2} \][/tex]

4. Simplify the expression on the right-hand side:
[tex]\[ p = 3c + 5 \][/tex]

5. Now we can write this in function notation, where [tex]\( c \)[/tex] is the independent variable and [tex]\( p \)[/tex] is the dependent variable. Denoting the function as [tex]\( f(c) \)[/tex], we have:
[tex]\[ f(c) = 3c + 5 \][/tex]

So, the equation in function notation, where [tex]\( c \)[/tex] is the independent variable, is:
[tex]\[ f(c) = 3c + 5 \][/tex]

From the given choices, the correct answer is:
[tex]\[ f(c) = 3c + 5 \][/tex]