Which is the solution to the inequality?

[tex]\[ 2 \frac{3}{5} \ \textless \ b - \frac{8}{15} \][/tex]

A. [tex]\( b \ \textless \ 2 \frac{1}{15} \)[/tex]
B. [tex]\( b \ \textgreater \ 2 \frac{1}{15} \)[/tex]
C. [tex]\( b \ \textless \ 3 \frac{2}{15} \)[/tex]
D. [tex]\( b \ \textgreater \ 3 \frac{2}{15} \)[/tex]



Answer :

To solve the inequality
[tex]\[ 2 \frac{3}{5}we need to isolate [tex]\( b \)[/tex].

Here is the detailed step-by-step solution:

1. First, convert the mixed number [tex]\( 2 \frac{3}{5} \)[/tex] into an improper fraction.
[tex]\[ 2 \frac{3}{5} = 2 + \frac{3}{5} = \frac{2 \cdot 5 + 3}{5} = \frac{10 + 3}{5} = \frac{13}{5}. \][/tex]

2. Now, rewrite the inequality with the improper fractions:
[tex]\[ \frac{13}{5} < b - \frac{8}{15}. \][/tex]

3. To isolate [tex]\( b \)[/tex], add [tex]\( \frac{8}{15} \)[/tex] to both sides of the inequality. To do this, we need to find a common denominator for the fractions [tex]\( \frac{13}{5} \)[/tex] and [tex]\( \frac{8}{15} \)[/tex].

The least common multiple of 5 and 15 is 15.

4. Convert [tex]\( \frac{13}{5} \)[/tex] to have a denominator of 15:
[tex]\[ \frac{13}{5} = \frac{13 \cdot 3}{5 \cdot 3} = \frac{39}{15}. \][/tex]

5. Now add [tex]\( \frac{39}{15} \)[/tex] and [tex]\( \frac{8}{15} \)[/tex]:
[tex]\[ \frac{39}{15} + \frac{8}{15} = \frac{39 + 8}{15} = \frac{47}{15}. \][/tex]

6. So the inequality now becomes:
[tex]\[ b > \frac{47}{15}. \][/tex]

7. Convert [tex]\( \frac{47}{15} \)[/tex] back to a mixed number to get the final result:
[tex]\[ \frac{47}{15} = 3 \frac{2}{15}. \][/tex]
Here, [tex]\( 47 \div 15 = 3 \)[/tex] with a remainder of [tex]\( 2 \)[/tex]. Thus:
[tex]\[ \frac{47}{15} = 3 \frac{2}{15}. \][/tex]

Therefore, the final inequality is:
[tex]\[ b > 3 \frac{2}{15}. \][/tex]

The correct answer is:
[tex]\[ b > 3 \frac{2}{15}. \][/tex]