A cart accelerates at [tex]$2 \, \text{m/s}^2$[/tex] when a force of 60 N is applied. What is the mass of the cart? (Formula: [tex]F = ma[/tex])

A. 0.03 kg
B. 30 kg
C. 62 kg
D. 120 kg



Answer :

To determine the mass of the cart, we use the formula relating force, mass, and acceleration:

[tex]\[ F = ma \][/tex]

Where:
- [tex]\( F \)[/tex] is the force applied,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( a \)[/tex] is the acceleration.

We need to find the mass [tex]\( m \)[/tex]. We can rearrange the formula to solve for [tex]\( m \)[/tex]:

[tex]\[ m = \frac{F}{a} \][/tex]

Given:
- The force [tex]\( F \)[/tex] is 60 N (Newtons),
- The acceleration [tex]\( a \)[/tex] is 2 m/s².

Substitute the given values into the rearranged formula:

[tex]\[ m = \frac{60 \, \text{N}}{2 \, \text{m/s}^2} \][/tex]

Calculate the result:

[tex]\[ m = 30 \, \text{kg} \][/tex]

Therefore, the mass of the cart is:

[tex]\[ \boxed{30 \, \text{kg}} \][/tex]

Among the given options:
- 0.03 kg,
- 30 kg,
- 62 kg,
- 120 kg,

The correct answer is 30 kg.