To determine the mass of the cart, we use the formula relating force, mass, and acceleration:
[tex]\[ F = ma \][/tex]
Where:
- [tex]\( F \)[/tex] is the force applied,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( a \)[/tex] is the acceleration.
We need to find the mass [tex]\( m \)[/tex]. We can rearrange the formula to solve for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{F}{a} \][/tex]
Given:
- The force [tex]\( F \)[/tex] is 60 N (Newtons),
- The acceleration [tex]\( a \)[/tex] is 2 m/s².
Substitute the given values into the rearranged formula:
[tex]\[ m = \frac{60 \, \text{N}}{2 \, \text{m/s}^2} \][/tex]
Calculate the result:
[tex]\[ m = 30 \, \text{kg} \][/tex]
Therefore, the mass of the cart is:
[tex]\[ \boxed{30 \, \text{kg}} \][/tex]
Among the given options:
- 0.03 kg,
- 30 kg,
- 62 kg,
- 120 kg,
The correct answer is 30 kg.