Consider the graph of the function [tex]f(x) = 10^x[/tex].

What is the [tex]y[/tex]-intercept of the function [tex]g[/tex] if [tex]g(x) = -4f(x) + 12[/tex]?

A. [tex](0, 1)[/tex]
B. [tex](0, 8)[/tex]
C. [tex](0, 12)[/tex]
D. [tex](0, -4)[/tex]



Answer :

To find the [tex]\( y \)[/tex]-intercept of the function [tex]\( g(x) = -4f(x) + 12 \)[/tex], we need to evaluate [tex]\( g(x) \)[/tex] at [tex]\( x = 0 \)[/tex].

First, let's recall the definition of the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = 10^x \][/tex]

Next, substitute [tex]\( x = 0 \)[/tex] into [tex]\( f(x) \)[/tex]:
[tex]\[ f(0) = 10^0 = 1 \][/tex]

Now, plug [tex]\( f(0) \)[/tex] into the expression for [tex]\( g(x) \)[/tex]:
[tex]\[ g(x) = -4f(x) + 12 \][/tex]

When [tex]\( x = 0 \)[/tex]:
[tex]\[ g(0) = -4f(0) + 12 \][/tex]
[tex]\[ g(0) = -4 \cdot 1 + 12 \][/tex]
[tex]\[ g(0) = -4 + 12 \][/tex]
[tex]\[ g(0) = 8 \][/tex]

Therefore, the [tex]\( y \)[/tex]-intercept of the function [tex]\( g \)[/tex] is:
[tex]\[ (0, 8) \][/tex]

Based on the given options, the correct answer is:
B. [tex]\((0, 8)\)[/tex]