The formula for the circumference of a circle is [tex]C = 2 \pi r[/tex].

Find the radius of a circle that has a circumference of [tex]16 \pi[/tex].

The equation solved for [tex]r[/tex] is [tex]r=\frac{C}{2 \pi}[/tex].

A. [tex]r=4[/tex]
B. [tex]r=8[/tex]
C. [tex]r=12[/tex]
D. [tex]r=16[/tex]



Answer :

Sure, let's go through the problem step-by-step.

1. Understanding the Formula:
The formula for the circumference of a circle is given by:
[tex]\[ C = 2 \pi r \][/tex]
where:
- [tex]\( C \)[/tex] is the circumference,
- [tex]\( r \)[/tex] is the radius of the circle,
- [tex]\( \pi \)[/tex] is a mathematical constant approximately equal to 3.14159.

2. Given Information:
The circumference [tex]\( C \)[/tex] of the circle is given as [tex]\( 16 \pi \)[/tex].

3. Solving for the Radius:
We need to solve for the radius [tex]\( r \)[/tex]. Using the formula for the circumference, we can rearrange it to solve for [tex]\( r \)[/tex]:
[tex]\[ C = 2 \pi r \][/tex]
Substituting [tex]\( C = 16 \pi \)[/tex] into the formula gives:
[tex]\[ 16 \pi = 2 \pi r \][/tex]

To isolate [tex]\( r \)[/tex], divide both sides of the equation by [tex]\( 2 \pi \)[/tex]:
[tex]\[ r = \frac{16 \pi}{2 \pi} \][/tex]

4. Simplifying the Expression:
Simplify the right-hand side of the equation:
[tex]\[ r = \frac{16 \pi}{2 \pi} = \frac{16}{2} = 8 \][/tex]

5. Conclusion:
The radius [tex]\( r \)[/tex] of the circle with a circumference of [tex]\( 16 \pi \)[/tex] is:
[tex]\[ r = 8 \][/tex]

Therefore, the radius of the circle is 8.