Second term: [tex]$10=(2)^3+2$[/tex]

Fourth term: [tex]$29=(3)^3+2$[/tex]

Sixth term: [tex]$66=(4)^3+2$[/tex]

Eighth term: [tex]$127=(5)^3+2$[/tex]

\begin{tabular}{|l|c|c|c|c|c|c|}
\hline
[tex]$n$[/tex] (Position in sequence) & 2 & 4 & 6 & 8 & 10 & [tex]$n$[/tex] \\
\hline
Value of term & 11 & 67 & 219 & 515 & [tex]$?$[/tex] & [tex]$?$[/tex] \\
\hline
\end{tabular}

Second term: [tex]$11$[/tex]

Fourth term: [tex]$67$[/tex]

Sixth term: [tex]$219$[/tex]

Eighth term: [tex]$515$[/tex]

Tenth term: [tex]$=$[/tex]

[tex]$n^{\text {th }}$[/tex] term: [tex]$=$[/tex]

\begin{tabular}{|l|c|c|c|c|c|c|}
\hline
[tex]$n$[/tex] (Position in sequence) & 2 & 4 & 6 & 8 & 10 & [tex]$n$[/tex] \\
\hline
Value of term & 8 & [tex]$?$[/tex] & 216 & 512 & [tex]$?$[/tex] & [tex]$?$[/tex] \\
\hline
\end{tabular}



Answer :

Sure, let's clarify the calculation of the terms in the sequence step by step. The given sequence is described by the term [tex]\((n^3) + 2\)[/tex], where [tex]\(n\)[/tex] is the position in the sequence.

1. Second Term:
- Position [tex]\(n = 2\)[/tex]
- Applying the formula: [tex]\((2^3) + 2 = 8 + 2 = 10\)[/tex]
- So, the second term is [tex]\(10\)[/tex].

2. Fourth Term:
- Position [tex]\(n = 4\)[/tex]
- Applying the formula: [tex]\((4^3) + 2 = 64 + 2 = 66\)[/tex]
- So, the fourth term is [tex]\(66\)[/tex].

3. Sixth Term:
- Position [tex]\(n = 6\)[/tex]
- Applying the formula: [tex]\((6^3) + 2 = 216 + 2 = 218\)[/tex]
- So, the sixth term is [tex]\(218\)[/tex].

4. Eighth Term:
- Position [tex]\(n = 8\)[/tex]
- Applying the formula: [tex]\((8^3) + 2 = 512 + 2 = 514\)[/tex]
- So, the eighth term is [tex]\(514\)[/tex].

5. Tenth Term:
- Position [tex]\(n = 10\)[/tex]
- Applying the formula: [tex]\((10^3) + 2 = 1000 + 2 = 1002\)[/tex]
- So, the tenth term is [tex]\(1002\)[/tex].

[tex]\[ \begin{tabular}{|l|c|c|c|c|c|c|} \hline n \text{ (Position in sequence)} & 2 & 4 & 6 & 8 & 10 & n \\ \hline \text{Value of term} & 10 & 66 & 218 & 514 & 1002 & \text{(nth term)} \\ \hline \end{tabular} \][/tex]

To summarize:
- Second term: [tex]\(10\)[/tex]
- Fourth term: [tex]\(66\)[/tex]
- Sixth term: [tex]\(218\)[/tex]
- Eighth term: [tex]\(514\)[/tex]
- Tenth term: [tex]\(1002\)[/tex]

These values align with our calculations, and you can use the same process to calculate any nth term using the formula [tex]\((n^3) + 2\)[/tex].