Answer :

To solve for [tex]\((f - g)(2)\)[/tex] given [tex]\(f(x) = 3x^2 + 1\)[/tex] and [tex]\(g(x) = 1 - x\)[/tex], we follow these steps:

1. Calculate [tex]\(f(2)\)[/tex]:
[tex]\[ f(2) = 3(2)^2 + 1 \][/tex]
First, calculate [tex]\(2^2\)[/tex]:
[tex]\[ 2^2 = 4 \][/tex]
Then multiply by 3:
[tex]\[ 3 \cdot 4 = 12 \][/tex]
Finally, add 1:
[tex]\[ 12 + 1 = 13 \][/tex]
So, [tex]\(f(2) = 13\)[/tex].

2. Calculate [tex]\(g(2)\)[/tex]:
[tex]\[ g(2) = 1 - 2 \][/tex]
Subtract 2 from 1:
[tex]\[ 1 - 2 = -1 \][/tex]
So, [tex]\(g(2) = -1\)[/tex].

3. Calculate [tex]\((f - g)(2)\)[/tex]:
[tex]\[ (f - g)(2) = f(2) - g(2) \][/tex]
Substitute the values we found:
[tex]\[ (f - g)(2) = 13 - (-1) \][/tex]
Subtracting a negative is the same as adding:
[tex]\[ 13 + 1 = 14 \][/tex]

Therefore, the value of [tex]\((f - g)(2)\)[/tex] is [tex]\(\boxed{14}\)[/tex].