Solve for [tex]$k$[/tex].

[tex]\[ 8k + 2m = 3m + k \][/tex]

A. [tex]k = 70m[/tex]

B. [tex]k = 7m[/tex]

C. [tex]k = \frac{7}{m}[/tex]

D. [tex]k = \frac{m}{7}[/tex]



Answer :

First, let's start by solving the given linear equation step-by-step:

The equation provided is:
[tex]\[ 8k + 2m = 3m + k \][/tex]

### Step 1: Move all terms involving [tex]\( k \)[/tex] to one side and all terms involving [tex]\( m \)[/tex] to the other side:
Subtract [tex]\( k \)[/tex] from both sides:
[tex]\[ 8k - k + 2m = 3m \][/tex]
This simplifies to:
[tex]\[ 7k + 2m = 3m \][/tex]

Next, subtract [tex]\( 2m \)[/tex] from both sides:
[tex]\[ 7k = 3m - 2m \][/tex]
This simplifies to:
[tex]\[ 7k = m \][/tex]

### Step 2: Solve for [tex]\( k \)[/tex]:
To isolate [tex]\( k \)[/tex], divide both sides of the equation by 7:
[tex]\[ k = \frac{m}{7} \][/tex]

We have now solved for [tex]\( k \)[/tex], and the solution is:
[tex]\[ k = \frac{m}{7} \][/tex]

Among the given options, the one that matches this result is:
[tex]\[ k = \frac{m}{7} \][/tex]

To verify, let's rewrite the final solution set using the derived value:

- [tex]\( k = 70m \)[/tex] is not correct.
- [tex]\( k = 7m \)[/tex] is not correct.
- [tex]\( k = \frac{7}{m} \)[/tex] is not correct.
- [tex]\( k = \frac{m}{7} \)[/tex] is correct.

So, the correct answer is:
[tex]\[ k = \frac{m}{7} \][/tex]