Simplify the following expression. Classify the resulting polynomial.

[tex]\[ 4x(x + 1) - (3x - 8)(x + 4) \][/tex]

A. quadratic monomial
B. quadratic trinomial
C. linear binomial
D. quadratic binomial



Answer :

Sure, let's simplify the expression step-by-step and classify the resulting polynomial.

The given expression is:
[tex]\[ 4x(x + 1) - (3x - 8)(x + 4) \][/tex]

First, let's expand the terms separately:

For [tex]\(4x(x + 1)\)[/tex]:
[tex]\[ 4x(x + 1) = 4x^2 + 4x \][/tex]

For [tex]\((3x - 8)(x + 4)\)[/tex], we use the distributive property (FOIL method):
[tex]\[ (3x - 8)(x + 4) = 3x(x) + 3x(4) - 8(x) - 8(4) \][/tex]
[tex]\[ = 3x^2 + 12x - 8x - 32 \][/tex]
[tex]\[ = 3x^2 + 4x - 32 \][/tex]

Now, we substitute these expanded expressions back into the original expression:
[tex]\[ 4x(x + 1) - (3x - 8)(x + 4) = (4x^2 + 4x) - (3x^2 + 4x - 32) \][/tex]

Next, distribute the negative sign in the second term:
[tex]\[ = 4x^2 + 4x - 3x^2 - 4x + 32 \][/tex]

Combine like terms:
[tex]\[ = (4x^2 - 3x^2) + (4x - 4x) + 32 \][/tex]
[tex]\[ = x^2 + 32 \][/tex]

We now have the simplified expression:
[tex]\[ x^2 + 32 \][/tex]

To classify the polynomial, observe:

1. The highest degree term is [tex]\(x^2\)[/tex], which indicates that it is a quadratic polynomial.
2. There are two terms: [tex]\(x^2\)[/tex] and [tex]\(32\)[/tex].

Therefore, the simplified expression [tex]\(x^2 + 32\)[/tex] is a quadratic polynomial with two terms.

So, the classification of the resulting polynomial is:
[tex]\[ \boxed{D. \text{quadratic binomial}} \][/tex]