Select the correct answer.

Find the value of [tex]$g(7)$[/tex] for the function below:
[tex]g(x) = \frac{7}{8} x - \frac{1}{2}[/tex]

A. [tex]\frac{49}{8}[/tex]
B. [tex]\frac{60}{7}[/tex]
C. [tex]\frac{53}{8}[/tex]
D. [tex]\frac{45}{8}[/tex]



Answer :

To find the value of [tex]\( g(7) \)[/tex] for the function [tex]\( g(x) = \frac{7}{8} x - \frac{1}{2} \)[/tex], we need to substitute [tex]\( x = 7 \)[/tex] into the function and simplify the expression step by step:

1. Start with the function:
[tex]\[ g(x) = \frac{7}{8} x - \frac{1}{2} \][/tex]

2. Substitute [tex]\( x = 7 \)[/tex] into the function:
[tex]\[ g(7) = \frac{7}{8} \cdot 7 - \frac{1}{2} \][/tex]

3. Calculate [tex]\( \frac{7}{8} \cdot 7 \)[/tex]:
[tex]\[ \frac{7}{8} \cdot 7 = \frac{49}{8} \][/tex]

4. Now subtract [tex]\( \frac{1}{2} \)[/tex] from [tex]\( \frac{49}{8} \)[/tex]. To do this, we need a common denominator:
[tex]\[ \frac{1}{2} = \frac{4}{8} \][/tex]

5. Perform the subtraction:
[tex]\[ \frac{49}{8} - \frac{4}{8} = \frac{49 - 4}{8} = \frac{45}{8} \][/tex]

6. Therefore, the value of [tex]\( g(7) \)[/tex] is:
[tex]\[ g(7) = \frac{45}{8} \][/tex]

Looking at the given options, the correct answer is:
[tex]\[ \boxed{\frac{45}{8}} \][/tex]