Answer :
To determine the values of the function [tex]\( h(x) \)[/tex] at [tex]\( x = 0 \)[/tex] and [tex]\( x = 4 \)[/tex], we need to refer to the piecewise definition of the function [tex]\( h \)[/tex].
1. For [tex]\( x = 0 \)[/tex]:
- Based on the definition, when [tex]\( 0 \leq x < 4 \)[/tex], the function [tex]\( h(x) = 2x^2 - 3x + 10 \)[/tex].
- Plug in [tex]\( x = 0 \)[/tex] into this part of the function:
[tex]\[ h(0) = 2(0)^2 - 3(0) + 10 \][/tex]
- Simplifying,
[tex]\[ h(0) = 0 - 0 + 10 = 10 \][/tex]
2. For [tex]\( x = 4 \)[/tex]:
- Based on the definition, when [tex]\( x \geq 4 \)[/tex], the function [tex]\( h(x) = 2^x \)[/tex].
- Plug in [tex]\( x = 4 \)[/tex] into this part of the function:
[tex]\[ h(4) = 2^4 \][/tex]
- Simplifying,
[tex]\[ h(4) = 16 \][/tex]
Thus, the values of the function are:
[tex]\[ \begin{array}{l} h(0) = 10 \\ h(4) = 16 \end{array} \][/tex]
1. For [tex]\( x = 0 \)[/tex]:
- Based on the definition, when [tex]\( 0 \leq x < 4 \)[/tex], the function [tex]\( h(x) = 2x^2 - 3x + 10 \)[/tex].
- Plug in [tex]\( x = 0 \)[/tex] into this part of the function:
[tex]\[ h(0) = 2(0)^2 - 3(0) + 10 \][/tex]
- Simplifying,
[tex]\[ h(0) = 0 - 0 + 10 = 10 \][/tex]
2. For [tex]\( x = 4 \)[/tex]:
- Based on the definition, when [tex]\( x \geq 4 \)[/tex], the function [tex]\( h(x) = 2^x \)[/tex].
- Plug in [tex]\( x = 4 \)[/tex] into this part of the function:
[tex]\[ h(4) = 2^4 \][/tex]
- Simplifying,
[tex]\[ h(4) = 16 \][/tex]
Thus, the values of the function are:
[tex]\[ \begin{array}{l} h(0) = 10 \\ h(4) = 16 \end{array} \][/tex]
Answer:
To determine the values of the function \( h(x) \) at \( x = 0 \) and \( x = 4 \), we need to refer to the piecewise definition of the function \( h \).
1. For \( x = 0 \):
- Based on the definition, when \( 0 \leq x < 4 \), the function \( h(x) = 2x^2 - 3x + 10 \).
- Plug in \( x = 0 \) into this part of the function:
\[
h(0) = 2(0)^2 - 3(0) + 10
\]
- Simplifying,
\[
h(0) = 0 - 0 + 10 = 10
\]
2. For \( x = 4 \):
- Based on the definition, when \( x \geq 4 \), the function \( h(x) = 2^x \).
- Plug in \( x = 4 \) into this part of the function:
\[
h(4) = 2^4
\]
- Simplifying,
\[
h(4) = 16
\]
Thus, the values of the function are:
\[
\begin{array}{l}
h(0) = 10 \n
h(4) = 16
\end{array}
\]
Step-by-step explanation: