Answer :
Sure! Let's simplify the expression given step-by-step. The expression to simplify is:
[tex]\[ 2(a + b) + 3(a + b) \][/tex]
### Step 1: Distribute the Constants Inside the Parentheses
First, we distribute the constants [tex]\(2\)[/tex] and [tex]\(3\)[/tex] inside the parentheses to both [tex]\(a\)[/tex] and [tex]\(b\)[/tex].
[tex]\[ 2(a + b) = 2a + 2b \][/tex]
[tex]\[ 3(a + b) = 3a + 3b \][/tex]
### Step 2: Combine the Distributed Terms
Now, we combine the results from the first step:
[tex]\[ 2a + 2b + 3a + 3b \][/tex]
### Step 3: Group and Combine Like Terms
Next, we group and combine the like terms (terms with [tex]\(a\)[/tex] and terms with [tex]\(b\)[/tex]):
[tex]\[ (2a + 3a) + (2b + 3b) \][/tex]
[tex]\[ 5a + 5b \][/tex]
### Step 4: Write the Simplified Expression
The final simplified expression is:
[tex]\[ 5a + 5b \][/tex]
So, the simplified form of [tex]\(2(a + b) + 3(a + b)\)[/tex] is:
[tex]\[ 5a + 5b \][/tex]
[tex]\[ 2(a + b) + 3(a + b) \][/tex]
### Step 1: Distribute the Constants Inside the Parentheses
First, we distribute the constants [tex]\(2\)[/tex] and [tex]\(3\)[/tex] inside the parentheses to both [tex]\(a\)[/tex] and [tex]\(b\)[/tex].
[tex]\[ 2(a + b) = 2a + 2b \][/tex]
[tex]\[ 3(a + b) = 3a + 3b \][/tex]
### Step 2: Combine the Distributed Terms
Now, we combine the results from the first step:
[tex]\[ 2a + 2b + 3a + 3b \][/tex]
### Step 3: Group and Combine Like Terms
Next, we group and combine the like terms (terms with [tex]\(a\)[/tex] and terms with [tex]\(b\)[/tex]):
[tex]\[ (2a + 3a) + (2b + 3b) \][/tex]
[tex]\[ 5a + 5b \][/tex]
### Step 4: Write the Simplified Expression
The final simplified expression is:
[tex]\[ 5a + 5b \][/tex]
So, the simplified form of [tex]\(2(a + b) + 3(a + b)\)[/tex] is:
[tex]\[ 5a + 5b \][/tex]