Answer :
To find the expression equivalent to [tex]\(2w + 3 - 3w - 7\)[/tex], we need to simplify the original expression step-by-step.
1. Start with the original expression:
[tex]\[ 2w + 3 - 3w - 7 \][/tex]
2. Combine the like terms. Begin by combining the [tex]\(w\)[/tex] terms:
[tex]\[ 2w - 3w \][/tex]
Combine these terms:
[tex]\[ 2w - 3w = -w \][/tex]
3. Now, combine the constant terms:
[tex]\[ 3 - 7 \][/tex]
Combine these terms:
[tex]\[ 3 - 7 = -4 \][/tex]
4. Now combine the simplified terms from the two steps:
[tex]\[ -w - 4 \][/tex]
Thus, the simplified expression is:
[tex]\[ -w - 4 \][/tex]
So, the expression [tex]\(2w + 3 - 3w - 7\)[/tex] is equivalent to [tex]\(-w - 4\)[/tex].
The correct choice from the given options is:
D. [tex]\(-4 - w\)[/tex]
1. Start with the original expression:
[tex]\[ 2w + 3 - 3w - 7 \][/tex]
2. Combine the like terms. Begin by combining the [tex]\(w\)[/tex] terms:
[tex]\[ 2w - 3w \][/tex]
Combine these terms:
[tex]\[ 2w - 3w = -w \][/tex]
3. Now, combine the constant terms:
[tex]\[ 3 - 7 \][/tex]
Combine these terms:
[tex]\[ 3 - 7 = -4 \][/tex]
4. Now combine the simplified terms from the two steps:
[tex]\[ -w - 4 \][/tex]
Thus, the simplified expression is:
[tex]\[ -w - 4 \][/tex]
So, the expression [tex]\(2w + 3 - 3w - 7\)[/tex] is equivalent to [tex]\(-w - 4\)[/tex].
The correct choice from the given options is:
D. [tex]\(-4 - w\)[/tex]