Answer :

To solve the equation [tex]\( S = \frac{n(n+1)}{2} \)[/tex] for [tex]\( n \)[/tex], follow these steps:

1. Clear the fraction: Multiply both sides of the equation by 2 to remove the denominator:
[tex]\[ 2S = n(n + 1) \][/tex]

2. Rearrange into a standard quadratic form: Expand the right side of the equation:
[tex]\[ 2S = n^2 + n \][/tex]

3. Set the equation to zero: Move all terms to one side to get a standard quadratic equation:
[tex]\[ n^2 + n - 2S = 0 \][/tex]

4. Identify the coefficients: The quadratic equation has the form [tex]\( an^2 + bn + c = 0 \)[/tex]. For our equation, [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -2S \)[/tex].

5. Use the quadratic formula: The solutions for [tex]\( n \)[/tex] in a quadratic equation [tex]\( an^2 + bn + c = 0 \)[/tex] are given by:
[tex]\[ n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substitute the coefficients [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -2S \)[/tex] into the formula:
[tex]\[ n = \frac{-1 \pm \sqrt{1^2 - 4(1)(-2S)}}{2(1)} \][/tex]
Simplify inside the square root:
[tex]\[ n = \frac{-1 \pm \sqrt{1 + 8S}}{2} \][/tex]

6. Simplify the solutions:
[tex]\[ n = \frac{-1 \pm \sqrt{8S + 1}}{2} \][/tex]

Thus, the solutions for [tex]\( n \)[/tex] are:
[tex]\[ n = \frac{-1 + \sqrt{8S + 1}}{2} \][/tex]
and
[tex]\[ n = \frac{-1 - \sqrt{8S + 1}}{2} \][/tex]

These correspond to:
[tex]\[ n = \sqrt{8S + 1}/2 - 1/2 \][/tex]
and
[tex]\[ n = -\sqrt{8S + 1}/2 - 1/2 \][/tex]

Therefore, the solutions to the equation [tex]\( S = \frac{n(n+1)}{2} \)[/tex] for [tex]\( n \)[/tex] are:
[tex]\[ n = \sqrt{8S + 1}/2 - 1/2 \][/tex]
and
[tex]\[ n = -\sqrt{8S + 1}/2 - 1/2 \][/tex]