Sure, let's solve the equation [tex]\( 7B = -g^3 B + h \)[/tex] for [tex]\( B \)[/tex].
Step-by-Step Solution:
1. Start with the given equation:
[tex]\[
7B = -g^3 B + h
\][/tex]
2. Move all terms involving [tex]\( B \)[/tex] to one side of the equation. This helps in isolating [tex]\( B \)[/tex]:
[tex]\[
7B + g^3 B = h
\][/tex]
3. Factor out [tex]\( B \)[/tex] from the left-hand side:
[tex]\[
B(7 + g^3) = h
\][/tex]
4. To solve for [tex]\( B \)[/tex], divide both sides of the equation by [tex]\( 7 + g^3 \)[/tex]:
[tex]\[
B = \frac{h}{7 + g^3}
\][/tex]
So the solution to the equation [tex]\( 7B = -g^3 B + h \)[/tex] is:
[tex]\[
B = \frac{h}{7 + g^3}
\][/tex]