Answer :

Sure, let's solve the equation [tex]\( 7B = -g^3 B + h \)[/tex] for [tex]\( B \)[/tex].

Step-by-Step Solution:

1. Start with the given equation:
[tex]\[ 7B = -g^3 B + h \][/tex]

2. Move all terms involving [tex]\( B \)[/tex] to one side of the equation. This helps in isolating [tex]\( B \)[/tex]:
[tex]\[ 7B + g^3 B = h \][/tex]

3. Factor out [tex]\( B \)[/tex] from the left-hand side:
[tex]\[ B(7 + g^3) = h \][/tex]

4. To solve for [tex]\( B \)[/tex], divide both sides of the equation by [tex]\( 7 + g^3 \)[/tex]:
[tex]\[ B = \frac{h}{7 + g^3} \][/tex]

So the solution to the equation [tex]\( 7B = -g^3 B + h \)[/tex] is:
[tex]\[ B = \frac{h}{7 + g^3} \][/tex]