Select the correct answer.

[tex]$\angle A$[/tex] and [tex]$\angle B$[/tex] are complementary angles of right triangle [tex]$ABC$[/tex]. Given that [tex]$\cos A = 0.83$[/tex] and [tex]$\cos B = 0.55$[/tex], what is [tex]$\sin A + \sin B$[/tex]?

A. [tex]$\quad 0.28$[/tex]

B. [tex]$\quad 1$[/tex]

C. [tex]$\quad 0.38$[/tex]

D. [tex]$\quad 1.38$[/tex]



Answer :

To find the sum of [tex]\(\sin A\)[/tex] and [tex]\(\sin B\)[/tex] where [tex]\(\cos A = 0.83\)[/tex] and [tex]\(\cos B = 0.55\)[/tex], we can use the Pythagorean identity for trigonometric functions in a right triangle. Let's go through the steps:

1. Recall the Pythagorean identity:
[tex]\[ \cos^2 \theta + \sin^2 \theta = 1 \][/tex]

2. Using this identity, solve for [tex]\(\sin A\)[/tex]:
[tex]\[ \cos^2 A + \sin^2 A = 1 \][/tex]
[tex]\[ (0.83)^2 + \sin^2 A = 1 \][/tex]
[tex]\[ 0.6889 + \sin^2 A = 1 \][/tex]
[tex]\[ \sin^2 A = 1 - 0.6889 \][/tex]
[tex]\[ \sin^2 A = 0.3111 \][/tex]
[tex]\[ \sin A = \sqrt{0.3111} \approx 0.5578 \][/tex]

3. Similarly, solve for [tex]\(\sin B\)[/tex]:
[tex]\[ \cos^2 B + \sin^2 B = 1 \][/tex]
[tex]\[ (0.55)^2 + \sin^2 B = 1 \][/tex]
[tex]\[ 0.3025 + \sin^2 B = 1 \][/tex]
[tex]\[ \sin^2 B = 1 - 0.3025 \][/tex]
[tex]\[ \sin^2 B = 0.6975 \][/tex]
[tex]\[ \sin B = \sqrt{0.6975} \approx 0.8352 \][/tex]

4. Sum up [tex]\(\sin A\)[/tex] and [tex]\(\sin B\)[/tex]:
[tex]\[ \sin A + \sin B \approx 0.5578 + 0.8352 = 1.393 \][/tex]

Therefore, the correct answer is:

D. 1.38