Simplify the expression completely: [tex] \frac{x^{22} \cdot y^{78}}{x^{19} \cdot y^{13}} [/tex]

Answer [tex] = \square [/tex]



Answer :

Sure, let's simplify the expression [tex]\(\frac{x^{22} \cdot y^{78}}{x^{19} \cdot y^{13}}\)[/tex].

### Step-by-Step Solution:

1. Separate the powers of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] in the fraction:

[tex]\[ \frac{x^{22} \cdot y^{78}}{x^{19} \cdot y^{13}} = \frac{x^{22}}{x^{19}} \cdot \frac{y^{78}}{y^{13}} \][/tex]

2. Simplify the powers of [tex]\(x\)[/tex]:

We have [tex]\(\frac{x^{22}}{x^{19}}\)[/tex].
Using the properties of exponents, where [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex]:

[tex]\[ \frac{x^{22}}{x^{19}} = x^{22-19} = x^3 \][/tex]

3. Simplify the powers of [tex]\(y\)[/tex]:

We have [tex]\(\frac{y^{78}}{y^{13}}\)[/tex].
Again, using the properties of exponents:

[tex]\[ \frac{y^{78}}{y^{13}} = y^{78-13} = y^{65} \][/tex]

4. Combine the simplified terms:

Now, combine the results of the simplified [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms:

[tex]\[ \frac{x^{22} \cdot y^{78}}{x^{19} \cdot y^{13}} = x^3 \cdot y^{65} \][/tex]

So, the completely simplified expression is:

[tex]\[ \boxed{x^3 y^{65}} \][/tex]