Determine the sum of the measures of the interior angles of a dodecagon (12-sided polygon).

A. [tex]360^{\circ}[/tex]
B. [tex]540^{\circ}[/tex]
C. [tex]1,800^{\circ}[/tex]
D. [tex]2,160^{\circ}[/tex]



Answer :

To determine the sum of the measures of the interior angles of a dodecagon (a polygon with 12 sides), we can use the formula for the sum of interior angles of an n-sided polygon, which is:

[tex]\[ \text{Sum of interior angles} = (n - 2) \times 180^\circ \][/tex]

Here, [tex]\(n\)[/tex] represents the number of sides of the polygon.

For a dodecagon, [tex]\(n = 12\)[/tex]. Substituting this value into the formula, we get:

[tex]\[ \text{Sum of interior angles} = (12 - 2) \times 180^\circ = 10 \times 180^\circ \][/tex]

Now, multiplying:

[tex]\[ 10 \times 180^\circ = 1800^\circ \][/tex]

Therefore, the sum of the measures of the interior angles of a dodecagon is [tex]\(1800^\circ\)[/tex].

The correct answer is:
[tex]\[ \boxed{1800^\circ} \][/tex]