Simplify the expression using the distributive property to remove parentheses.

[tex]\[
\begin{array}{l}
4(x+2)-(2x-8) \\
4(x+2)-(2x-8)=\square
\end{array}
\][/tex]



Answer :

Sure, let's simplify the expression step by step using the distributive property to remove the parentheses.

Given the expression:
[tex]\[ 4(x + 2) - (2x - 8) \][/tex]

First, distribute the 4 in the first term:
[tex]\[ 4(x + 2) \rightarrow 4x + 8 \][/tex]

Next, distribute the negative sign in the second term:
[tex]\[ -(2x - 8) \rightarrow -2x + 8 \][/tex]

Now, rewrite the expression combining these distributed terms:
[tex]\[ 4x + 8 - 2x + 8 \][/tex]

Combine like terms:
[tex]\[ (4x - 2x) + (8 + 8) \][/tex]
[tex]\[ 2x + 16 \][/tex]

So the simplified expression is:
[tex]\[ 4(x + 2) - (2x - 8) = 2x + 16 \][/tex]