For any positive numbers [tex]a[/tex], [tex]b[/tex], and [tex]d[/tex], with [tex]b \neq 1[/tex],

[tex]\[ \log_b\left(a^d\right) = \][/tex]

A. [tex]d \cdot \log_b a[/tex]

B. [tex]d + \log_b a[/tex]

C. [tex]a^d \cdot \log_b a^d[/tex]

D. [tex]\log_b a + \log_b d[/tex]



Answer :

To solve the problem [tex]\(\log _b(a^d)\)[/tex], let's use the properties of logarithms. Recall that for any positive real numbers [tex]\( a \)[/tex] and [tex]\( b \)[/tex], and any real number [tex]\( d \)[/tex],

[tex]\[ \log_b(a^d) \][/tex]

we can apply the logarithm power rule. The logarithm power rule states that:

[tex]\[ \log_b(a^d) = d \cdot \log_b(a) \][/tex]

So, if we have the expression [tex]\(\log _b(a^d)\)[/tex], it simplifies as follows:

1. Start with the given logarithmic expression: [tex]\(\log_b(a^d)\)[/tex].
2. Use the power rule of logarithms: This rule allows us to move the exponent [tex]\(d\)[/tex] from the argument of the logarithm to a coefficient in front. Therefore:
[tex]\[ \log_b(a^d) = d \cdot \log_b(a) \][/tex]

Hence, based on this simplification, [tex]\(\log _b(a^d)\)[/tex] is equal to [tex]\(d \cdot \log _b a\)[/tex].

Thus, the correct answer is:
[tex]\[ \boxed{A. \ d \cdot \log _b a} \][/tex]