Question 17 of 23

This test: 23 points

This question: 1 point

Given:

[tex]\[
\log_{a} 5 \approx 0.699 \quad \text{and} \quad \log_{a} 3 \approx 0.477
\][/tex]

Use one or both of these values to evaluate:

[tex]\[
\log_{a} 125
\][/tex]



Answer :

To evaluate [tex]\(\log_{a} 125\)[/tex] using the given values [tex]\(\log_{a} 5 \approx 0.699\)[/tex] and [tex]\(\log_{a} 3 \approx 0.477\)[/tex], we need to express 125 in terms of the base 5 or 3.

Notice that 125 can be written as a power of 5:
[tex]\[ 125 = 5^3 \][/tex]

We can use the properties of logarithms to find [tex]\(\log_{a} 125\)[/tex]. Specifically, we will use the power rule for logarithms, which states:
[tex]\[ \log_{a} (b^c) = c \cdot \log_{a} b \][/tex]

In this context:
[tex]\[ \log_{a} (5^3) = 3 \cdot \log_{a} 5 \][/tex]

Using the given value of [tex]\(\log_{a} 5 \approx 0.699\)[/tex]:
[tex]\[ \log_{a} 125 = 3 \cdot \log_{a} 5 \approx 3 \cdot 0.699 \][/tex]

Multiplying these values:
[tex]\[ \log_{a} 125 \approx 3 \times 0.699 = 2.097 \][/tex]

Thus, the value of [tex]\(\log_{a} 125\)[/tex] is approximately:
[tex]\[ \boxed{2.097} \][/tex]