Select all the equations where [tex]$x=3$[/tex] is a solution.

Choose 2 answers:
A. [tex]x+4=7[/tex]
B. [tex]\frac{x}{9}=3[/tex]
C. [tex]5-x=2[/tex]
D. [tex]8x=32[/tex]
E. [tex]x-10=7[/tex]



Answer :

Let's evaluate each of the given equations to determine if [tex]\( x = 3 \)[/tex] is a solution for them.

### Equation (A): [tex]\( x + 4 = 7 \)[/tex]
Substitute [tex]\( x \)[/tex] with 3 into the equation:
[tex]\[ 3 + 4 = 7 \][/tex]
Simplifying the left side:
[tex]\[ 7 = 7 \][/tex]
This equation holds true when [tex]\( x = 3 \)[/tex].

### Equation (B): [tex]\( \frac{x}{9} = 3 \)[/tex]
Substitute [tex]\( x \)[/tex] with 3 into the equation:
[tex]\[ \frac{3}{9} = 3 \][/tex]
Simplifying the left side:
[tex]\[ \frac{1}{3} = 3 \][/tex]
This equation does not hold true when [tex]\( x = 3 \)[/tex].

### Equation (C): [tex]\( 5 - x = 2 \)[/tex]
Substitute [tex]\( x \)[/tex] with 3 into the equation:
[tex]\[ 5 - 3 = 2 \][/tex]
Simplifying the left side:
[tex]\[ 2 = 2 \][/tex]
This equation holds true when [tex]\( x = 3 \)[/tex].

### Equation (D): [tex]\( 8x = 32 \)[/tex]
Substitute [tex]\( x \)[/tex] with 3 into the equation:
[tex]\[ 8 \times 3 = 32 \][/tex]
Simplifying the left side:
[tex]\[ 24 = 32 \][/tex]
This equation does not hold true when [tex]\( x = 3 \)[/tex].

### Equation (E): [tex]\( x - 10 = 7 \)[/tex]
Substitute [tex]\( x \)[/tex] with 3 into the equation:
[tex]\[ 3 - 10 = 7 \][/tex]
Simplifying the left side:
[tex]\[ -7 = 7 \][/tex]
This equation does not hold true when [tex]\( x = 3 \)[/tex].

Based on the evaluations, [tex]\( x = 3 \)[/tex] is a solution for the following equations:
(A) [tex]\( x + 4 = 7 \)[/tex]
(C) [tex]\( 5 - x = 2 \)[/tex]