Type the correct answer in each box. Spell all words correctly.

A sequence of transformations maps [tex]$\triangle ABC$[/tex] onto [tex]$\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$[/tex]. The type of transformation that maps [tex]$\triangle ABC$[/tex] onto [tex]$\triangle A^{\prime} B^{\prime} C^{\prime}$[/tex] is a [tex]$\square$[/tex].

When [tex]$\triangle A^{\prime} B^{\prime} C^{\prime}$[/tex] is reflected across the line [tex]$x = -2$[/tex] to form [tex]$\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$[/tex], vertex [tex]$\square$[/tex] of [tex]$\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$[/tex] will have the same coordinates as [tex]$B^{\prime}$[/tex].



Answer :

A sequence of transformations maps [tex]$\triangle ABC$[/tex] onto [tex]$\triangle A''B''C''$[/tex]. The type of transformation that maps [tex]$\triangle ABC$[/tex] onto [tex]$\triangle A'B'C'$[/tex] is a translation. When [tex]$\triangle A'B'C'$[/tex] is reflected across the line [tex]$x=-2$[/tex] to form [tex]$\triangle A''B''C''$[/tex], vertex A'' of [tex]$\triangle A'' B'' C''$[/tex] will have the same coordinates as [tex]$B'$[/tex].