The following data values represent a population. What is the variance of the population? [tex]\mu=6[/tex]. Use the information in the table to help you.

\begin{tabular}{|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & 1 & 5 & 7 & 11 \\
\hline
[tex]$(x-\mu)^2$[/tex] & 25 & 1 & 1 & 25 \\
\hline
\end{tabular}

A. 13
B. 11
C. 6
D. 25



Answer :

To find the variance of the given population, follow these steps:

1. Understand the data provided:
- The mean [tex]\(\mu\)[/tex] of the population is given as 6.
- The data values [tex]\(x\)[/tex] are: 1, 5, 7, 11.
- The squared differences from the mean, [tex]\((x - \mu)^2\)[/tex], are provided for each [tex]\(x\)[/tex]:
- For 1: [tex]\((1 - 6)^2 = 25\)[/tex]
- For 5: [tex]\((5 - 6)^2 = 1\)[/tex]
- For 7: [tex]\((7 - 6)^2 = 1\)[/tex]
- For 11: [tex]\((11 - 6)^2 = 25\)[/tex]

2. Sum the squared differences:
[tex]\[ \sum (x - \mu)^2 = 25 + 1 + 1 + 25 = 52 \][/tex]

3. Find the population size (N):
[tex]\[ N = 4 \][/tex]

4. Calculate the variance of the population using the formula:
[tex]\[ \sigma^2 = \frac{\sum (x - \mu)^2}{N} \][/tex]
Substituting the values:
[tex]\[ \sigma^2 = \frac{52}{4} = 13 \][/tex]

Therefore, the variance of the population is:
[tex]\[ \boxed{13} \][/tex]

The correct answer is (A) 13.