Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar.

What value of [tex]\( p \)[/tex] makes the equation true?

[tex]\[ -3p + \frac{1}{8} = -\frac{1}{4} \][/tex]

[tex]\[ p = \][/tex]



Answer :

To find the value of [tex]\( p \)[/tex] that makes the equation [tex]\( -3p + \frac{1}{8} = -\frac{1}{4} \)[/tex] true, follow these step-by-step instructions:

1. Start with the given equation:
[tex]\[ -3p + \frac{1}{8} = -\frac{1}{4} \][/tex]

2. First, isolate the term with [tex]\( p \)[/tex]. Subtract [tex]\(\frac{1}{8}\)[/tex] from both sides of the equation:
[tex]\[ -3p = -\frac{1}{4} - \frac{1}{8} \][/tex]

3. To subtract the fractions, find a common denominator. The least common denominator of 4 and 8 is 8. Rewrite [tex]\(-\frac{1}{4}\)[/tex] as an equivalent fraction with the denominator 8:
[tex]\[ -\frac{1}{4} = -\frac{2}{8} \][/tex]

4. Now the equation becomes:
[tex]\[ -3p = -\frac{2}{8} - \frac{1}{8} \][/tex]

5. Combine the fractions on the right side:
[tex]\[ -3p = -\frac{3}{8} \][/tex]

6. Next, solve for [tex]\( p \)[/tex] by dividing both sides of the equation by -3:
[tex]\[ p = \frac{-\frac{3}{8}}{-3} \][/tex]

7. Simplify the right side:
[tex]\[ p = \frac{3}{8} \times \frac{1}{3} = \frac{3}{24} = \frac{1}{8} \][/tex]

Therefore, the value of [tex]\( p \)[/tex] that makes the equation true is:
[tex]\[ p = \frac{1}{8} \][/tex]