The endpoints of [tex]$\overline{AB}$[/tex] are [tex]$A(2,2)$[/tex] and [tex]$B(3,8)$[/tex]. [tex]$\overline{AB}$[/tex] is dilated by a scale factor of 3.5 with the origin as the center of dilation to give image [tex]$\overline{A^{\prime}B^{\prime}}$[/tex]. What are the slope [tex]$(m)$[/tex] and length of [tex]$\overline{A^{\prime}B^{\prime}}$[/tex]?

Use the distance formula to help you decide: [tex]$d=\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$[/tex].

A. [tex]$m=21, A^{\prime}B^{\prime}=3.5 \sqrt{37}$[/tex]
B. [tex]$m=6, A^{\prime}B^{\prime}=3.5 \sqrt{37}$[/tex]
C. [tex]$m=21, A^{\prime}B^{\prime}=\sqrt{37}$[/tex]
D. [tex]$m=6, A^{\prime}B^{\prime}=\sqrt{37}$[/tex]



Answer :

To determine the correct slope and the length of the image segment [tex]$A^{\prime}B^{\prime}$[/tex], let's break down the problem step-by-step.

### 1. Calculate the Slope [tex]\( m \)[/tex]

Given points [tex]\( A(2,2) \)[/tex] and [tex]\( B(3,8) \)[/tex], we can find the slope [tex]\( m \)[/tex] of [tex]\(\overline{AB}\)[/tex] using the slope formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Here, [tex]\( (x_1, y_1) = (2, 2) \)[/tex] and [tex]\( (x_2, y_2) = (3, 8) \)[/tex]. Plugging these values in:
[tex]\[ m = \frac{8 - 2}{3 - 2} = \frac{6}{1} = 6 \][/tex]

So, the slope [tex]\( m \)[/tex] is [tex]\( 6 \)[/tex].

### 2. Calculate the Length of [tex]\(\overline{AB}\)[/tex]

Next, we use the distance formula to find the length of [tex]\(\overline{AB}\)[/tex]:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

Substituting the coordinates of [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ d = \sqrt{(3 - 2)^2 + (8 - 2)^2} = \sqrt{1^2 + 6^2} = \sqrt{1 + 36} = \sqrt{37} \][/tex]

### 3. Calculate the Length of Dilated Segment [tex]\(\overline{A'B'}\)[/tex]

The segment [tex]\(\overline{AB}\)[/tex] is dilated by a factor of [tex]\( 3.5 \)[/tex] with respect to the origin. The length of the dilated segment [tex]\(\overline{A'B'}\)[/tex] is:
[tex]\[ \text{Length of } \overline{A'B'} = 3.5 \times \sqrt{37} \][/tex]

Thus, the length of [tex]\(\overline{A'B'}\)[/tex] is [tex]\( 3.5 \sqrt{37} \)[/tex].

### Conclusions

- The slope [tex]\( m \)[/tex] of [tex]\(\overline{AB}\)[/tex] is [tex]\( 6 \)[/tex].
- The length of the dilated segment [tex]\(\overline{A'B'}\)[/tex] is [tex]\( 3.5 \sqrt{37} \)[/tex].

### Answer

From the multiple-choice options given:
A. [tex]\( m = 21 \)[/tex], [tex]\( \overline{A'B'} = 3.5 \sqrt{37} \)[/tex]
B. [tex]\( m = 6 \)[/tex], [tex]\( \overline{A'B'} = 3.5 \sqrt{37} \)[/tex]
C. [tex]\( m = 21 \)[/tex], [tex]\( \overline{A'B'} = \sqrt{37} \)[/tex]
D. [tex]\( m = 6 \)[/tex], [tex]\( \overline{A'B'} = \sqrt{37} \)[/tex]

The correct answer is:
B. [tex]\( m = 6 \)[/tex], [tex]\( \overline{A'B'} = 3.5 \sqrt{37} \)[/tex]