The function [tex]\( f \)[/tex] is defined by the following rule:
[tex]\[ f(x) = 2x - 5 \][/tex]

Complete the function table.

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $f(x)$ \\
\hline
-1 & $\square$ \\
\hline
0 & $\square$ \\
\hline
1 & $\square$ \\
\hline
2 & $\square$ \\
\hline
3 & $\square$ \\
\hline
\end{tabular}
\][/tex]



Answer :

Let's fill in the function table step-by-step for the function [tex]\( f(x) = 2x - 5 \)[/tex].

1. For [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = 2(-1) - 5 = -2 - 5 = -7 \][/tex]
So, [tex]\( f(-1) = -7 \)[/tex].

2. For [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 2(0) - 5 = 0 - 5 = -5 \][/tex]
So, [tex]\( f(0) = -5 \)[/tex].

3. For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2(1) - 5 = 2 - 5 = -3 \][/tex]
So, [tex]\( f(1) = -3 \)[/tex].

4. For [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 2(2) - 5 = 4 - 5 = -1 \][/tex]
So, [tex]\( f(2) = -1 \)[/tex].

5. For [tex]\( x = 3 \)[/tex]:
[tex]\[ f(3) = 2(3) - 5 = 6 - 5 = 1 \][/tex]
So, [tex]\( f(3) = 1 \)[/tex].

Now we can complete the function table:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -1 & -7 \\ \hline 0 & -5 \\ \hline 1 & -3 \\ \hline 2 & -1 \\ \hline 3 & 1 \\ \hline \end{array} \][/tex]