Answer :
Let's convert each fraction to a percentage and each percentage to a fraction in its lowest terms step-by-step.
### Converting Fractions to Percentages
To convert a fraction to a percentage, we can multiply the fraction by 100.
1. [tex]\(\frac{3}{5}\)[/tex]
[tex]\[ \frac{3}{5} \times 100 = 60.0\% \][/tex]
2. [tex]\(\frac{9}{10}\)[/tex]
[tex]\[ \frac{9}{10} \times 100 = 90.0\% \][/tex]
3. [tex]\(\frac{13}{100}\)[/tex]
[tex]\[ \frac{13}{100} \times 100 = 13.0\% \][/tex]
4. [tex]\(\frac{89}{100}\)[/tex]
[tex]\[ \frac{89}{100} \times 100 = 89.0\% \][/tex]
### Converting Percentages to Fractions in Lowest Terms
To convert a percentage to a fraction, we can write the percentage as a fraction with a denominator of 100 and then simplify it.
1. [tex]\(4\%\)[/tex]
[tex]\[ \frac{4}{100} = \text{Simplify to } \frac{1}{25} \][/tex]
2. [tex]\(16\%\)[/tex]
[tex]\[ \frac{16}{100} = \text{Simplify to } \frac{4}{25} \][/tex]
3. [tex]\(25\%\)[/tex]
[tex]\[ \frac{25}{100} = \text{Simplify to } \frac{1}{4} \][/tex]
4. [tex]\(34\%\)[/tex]
[tex]\[ \frac{34}{100} = \text{Simplify to } \frac{17}{50} \][/tex]
### Summary
Converting fractions to percentages:
- [tex]\(\frac{3}{5} = 60.0\%\)[/tex]
- [tex]\(\frac{9}{10} = 90.0\%\)[/tex]
- [tex]\(\frac{13}{100} = 13.0\%\)[/tex]
- [tex]\(\frac{89}{100} = 89.0\%\)[/tex]
Converting percentages to fractions:
- [tex]\(4\% = \frac{1}{25}\)[/tex]
- [tex]\(16\% = \frac{4}{25}\)[/tex]
- [tex]\(25\% = \frac{1}{4}\)[/tex]
- [tex]\(34\% = \frac{17}{50}\)[/tex]
These are the detailed step-by-step solutions for converting each type of number.
### Converting Fractions to Percentages
To convert a fraction to a percentage, we can multiply the fraction by 100.
1. [tex]\(\frac{3}{5}\)[/tex]
[tex]\[ \frac{3}{5} \times 100 = 60.0\% \][/tex]
2. [tex]\(\frac{9}{10}\)[/tex]
[tex]\[ \frac{9}{10} \times 100 = 90.0\% \][/tex]
3. [tex]\(\frac{13}{100}\)[/tex]
[tex]\[ \frac{13}{100} \times 100 = 13.0\% \][/tex]
4. [tex]\(\frac{89}{100}\)[/tex]
[tex]\[ \frac{89}{100} \times 100 = 89.0\% \][/tex]
### Converting Percentages to Fractions in Lowest Terms
To convert a percentage to a fraction, we can write the percentage as a fraction with a denominator of 100 and then simplify it.
1. [tex]\(4\%\)[/tex]
[tex]\[ \frac{4}{100} = \text{Simplify to } \frac{1}{25} \][/tex]
2. [tex]\(16\%\)[/tex]
[tex]\[ \frac{16}{100} = \text{Simplify to } \frac{4}{25} \][/tex]
3. [tex]\(25\%\)[/tex]
[tex]\[ \frac{25}{100} = \text{Simplify to } \frac{1}{4} \][/tex]
4. [tex]\(34\%\)[/tex]
[tex]\[ \frac{34}{100} = \text{Simplify to } \frac{17}{50} \][/tex]
### Summary
Converting fractions to percentages:
- [tex]\(\frac{3}{5} = 60.0\%\)[/tex]
- [tex]\(\frac{9}{10} = 90.0\%\)[/tex]
- [tex]\(\frac{13}{100} = 13.0\%\)[/tex]
- [tex]\(\frac{89}{100} = 89.0\%\)[/tex]
Converting percentages to fractions:
- [tex]\(4\% = \frac{1}{25}\)[/tex]
- [tex]\(16\% = \frac{4}{25}\)[/tex]
- [tex]\(25\% = \frac{1}{4}\)[/tex]
- [tex]\(34\% = \frac{17}{50}\)[/tex]
These are the detailed step-by-step solutions for converting each type of number.