Answered

Make [tex]$q$[/tex] the subject of the formula [tex]$2(q+p)=1+5q$[/tex].

Give your answer in the form [tex]$\frac{a p - b}{c}$[/tex], where [tex][tex]$a$[/tex][/tex], [tex]$b$[/tex], and [tex]$c$[/tex] are all positive integers.



Answer :

To make [tex]\( q \)[/tex] the subject of the formula [tex]\( 2(q + p) = 1 + 5q \)[/tex], follow these steps:

1. Expand and simplify the equation:

Start with the equation:
[tex]\[ 2(q + p) = 1 + 5q \][/tex]

Distribute the 2 on the left-hand side:
[tex]\[ 2q + 2p = 1 + 5q \][/tex]

2. Isolate the terms involving [tex]\( q \)[/tex]:

Move all terms involving [tex]\( q \)[/tex] to one side of the equation. Subtract [tex]\( 2q \)[/tex] from both sides:
[tex]\[ 2p = 1 + 5q - 2q \][/tex]

Simplify the right-hand side:
[tex]\[ 2p = 1 + 3q \][/tex]

3. Solve for [tex]\( q \)[/tex]:

Isolate [tex]\( q \)[/tex] by subtracting 1 from both sides:
[tex]\[ 2p - 1 = 3q \][/tex]

Finally, divide both sides by 3 to solve for [tex]\( q \)[/tex]:
[tex]\[ q = \frac{2p - 1}{3} \][/tex]

Thus, the solution for [tex]\( q \)[/tex] in terms of [tex]\( p \)[/tex] is:
[tex]\[ q = \frac{2p - 1}{3} \][/tex]

And as requested, in the form [tex]\(\frac{a p - b}{c}\)[/tex], where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are positive integers:
[tex]\[ q = \frac{2p - 1}{3} \][/tex]
Here, [tex]\( a = 2 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = 3 \)[/tex].