Answer :

To solve the expression [tex]\(\sqrt{2}+\frac{1}{2}-\sqrt{5}+e\)[/tex], we will break it down into parts and evaluate each term individually.

1. Evaluating [tex]\(\sqrt{2}\)[/tex]:
The square root of 2 ([tex]\(\sqrt{2}\)[/tex]) is approximately 1.4142135623730951.

2. Evaluating [tex]\(\frac{1}{2}\)[/tex]:
The fraction [tex]\(\frac{1}{2}\)[/tex] is simply 0.5.

3. Evaluating [tex]\(\sqrt{5}\)[/tex]:
The square root of 5 ([tex]\(\sqrt{5}\)[/tex]) is approximately 2.23606797749979.

4. Evaluating [tex]\(e\)[/tex]:
The constant [tex]\(e\)[/tex] (Euler's number) is approximately 2.718281828459045.

Now that we have the values for each term, let's substitute them into the expression:

[tex]\[ \sqrt{2}+\frac{1}{2}-\sqrt{5}+e \][/tex]

Substituting the approximate values, we get:

[tex]\[ 1.4142135623730951 + 0.5 - 2.23606797749979 + 2.718281828459045 \][/tex]

Next, perform the addition and subtraction step-by-step:

1. First, add [tex]\(\sqrt{2}\)[/tex] and [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[ 1.4142135623730951 + 0.5 = 1.9142135623730951 \][/tex]

2. Then, subtract [tex]\(\sqrt{5}\)[/tex] from the result:
[tex]\[ 1.9142135623730951 - 2.23606797749979 = -0.3218544151266949 \][/tex]

3. Lastly, add [tex]\(e\)[/tex] to the result:
[tex]\[ -0.3218544151266949 + 2.718281828459045 = 2.3964274133323507 \][/tex]

Thus, the final value of the expression [tex]\(\sqrt{2}+\frac{1}{2}-\sqrt{5}+e\)[/tex] is approximately [tex]\(2.3964274133323507\)[/tex].