Answer :
Of course! Let's work through the expression step by step.
Given the expression:
[tex]\[ \pi + 2.8 - \frac{17}{25} + 8 \][/tex]
Step-by-Step Solution:
1. Identify the given values:
- The value of [tex]\(\pi\)[/tex] (pi) is approximately [tex]\(3.141592653589793\)[/tex].
- The decimal number is [tex]\(2.8\)[/tex].
- The fraction is [tex]\(\frac{17}{25}\)[/tex], which we need to convert to a decimal.
- The integer is [tex]\(8\)[/tex].
2. Convert the fraction to a decimal:
[tex]\[ \frac{17}{25} = 0.68 \][/tex]
3. Substitute the values into the expression:
[tex]\[ 3.141592653589793 + 2.8 - 0.68 + 8 \][/tex]
4. Perform the addition and subtraction step by step:
- First, add [tex]\(\pi\)[/tex] and [tex]\(2.8\)[/tex]:
[tex]\[ 3.141592653589793 + 2.8 = 5.941592653589793 \][/tex]
- Next, subtract [tex]\(0.68\)[/tex] from the result:
[tex]\[ 5.941592653589793 - 0.68 = 5.261592653589793 \][/tex]
- Finally, add [tex]\(8\)[/tex] to the result:
[tex]\[ 5.261592653589793 + 8 = 13.261592653589794 \][/tex]
Final Answer:
[tex]\[ 13.261592653589794 \][/tex]
Thus, the value of the expression [tex]\(\pi + 2.8 - \frac{17}{25} + 8\)[/tex] is approximately [tex]\(13.261592653589794\)[/tex].
Given the expression:
[tex]\[ \pi + 2.8 - \frac{17}{25} + 8 \][/tex]
Step-by-Step Solution:
1. Identify the given values:
- The value of [tex]\(\pi\)[/tex] (pi) is approximately [tex]\(3.141592653589793\)[/tex].
- The decimal number is [tex]\(2.8\)[/tex].
- The fraction is [tex]\(\frac{17}{25}\)[/tex], which we need to convert to a decimal.
- The integer is [tex]\(8\)[/tex].
2. Convert the fraction to a decimal:
[tex]\[ \frac{17}{25} = 0.68 \][/tex]
3. Substitute the values into the expression:
[tex]\[ 3.141592653589793 + 2.8 - 0.68 + 8 \][/tex]
4. Perform the addition and subtraction step by step:
- First, add [tex]\(\pi\)[/tex] and [tex]\(2.8\)[/tex]:
[tex]\[ 3.141592653589793 + 2.8 = 5.941592653589793 \][/tex]
- Next, subtract [tex]\(0.68\)[/tex] from the result:
[tex]\[ 5.941592653589793 - 0.68 = 5.261592653589793 \][/tex]
- Finally, add [tex]\(8\)[/tex] to the result:
[tex]\[ 5.261592653589793 + 8 = 13.261592653589794 \][/tex]
Final Answer:
[tex]\[ 13.261592653589794 \][/tex]
Thus, the value of the expression [tex]\(\pi + 2.8 - \frac{17}{25} + 8\)[/tex] is approximately [tex]\(13.261592653589794\)[/tex].