Select the correct answer.

The endpoints of [tex]\overline{ GH }[/tex] are [tex]G(14,3)[/tex] and [tex]H(10,-6)[/tex]. What is the midpoint of [tex]\overline{ GH }[/tex]?

A. [tex](6, -15)[/tex]

B. [tex]\left(-2, -\frac{9}{2}\right)[/tex]

C. [tex]\left(12, -\frac{3}{2}\right)[/tex]

D. [tex](24, -3)[/tex]

E. [tex](18, 12)[/tex]



Answer :

To find the midpoint of a line segment with endpoints [tex]\( G(14,3) \)[/tex] and [tex]\( H(10,-6) \)[/tex], we use the midpoint formula. The midpoint formula states that the midpoint [tex]\( M \)[/tex] of a line segment with endpoints [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:

[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

Given the points [tex]\( G(14,3) \)[/tex] and [tex]\( H(10,-6) \)[/tex], we can assign:
[tex]\[ x_1 = 14 \][/tex]
[tex]\[ y_1 = 3 \][/tex]
[tex]\[ x_2 = 10 \][/tex]
[tex]\[ y_2 = -6 \][/tex]

Substituting these values into the midpoint formula, we get:
[tex]\[ M = \left( \frac{14 + 10}{2}, \frac{3 + (-6)}{2} \right) \][/tex]

First, calculate the x-coordinate of the midpoint:
[tex]\[ \frac{14 + 10}{2} = \frac{24}{2} = 12 \][/tex]

Next, calculate the y-coordinate of the midpoint:
[tex]\[ \frac{3 + (-6)}{2} = \frac{3 - 6}{2} = \frac{-3}{2} = -\frac{3}{2} \][/tex]

Therefore, the coordinates of the midpoint are:
[tex]\[ M = \left( 12, -\frac{3}{2} \right) \][/tex]

Comparing this with the given options, the correct option is:
C. [tex]\(\left(12,-\frac{3}{2}\right)\)[/tex]