Select the correct answer.

Based on the data in this two-way table, which statement is true?

\begin{tabular}{|c|c|c|c|c|}
\hline Type of Flower/Color & Red & Pink & Yellow & Total \\
\hline Rose & 40 & 20 & 45 & 105 \\
\hline Hibiscus & 80 & 40 & 90 & 210 \\
\hline Total & 120 & 60 & 135 & 315 \\
\hline
\end{tabular}

A. [tex]P(\text{flower is yellow} \mid \text{flower is rose}) \neq P(\text{flower is yellow})[/tex]

B. [tex]P(\text{flower is hibiscus} \mid \text{color is red}) = P(\text{flower is hibiscus})[/tex]

C. [tex]P(\text{flower is rose} \mid \text{color is red}) = P(\text{flower is red})[/tex]

D. [tex]P(\text{flower is hibiscus} \mid \text{color is pink}) \neq P(\text{flower is hibiscus})[/tex]



Answer :

Let's analyze each of the provided statements using probabilities derived from the given table:

### Table Overview
The given table shows the distribution of flowers by color and type:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline \text{Type of Flower/Color} & \text{Red} & \text{Pink} & \text{Yellow} & \text{Total} \\ \hline \text{Rose} & 40 & 20 & 45 & 105 \\ \hline \text{Hibiscus} & 80 & 40 & 90 & 210 \\ \hline \text{Total} & 120 & 60 & 135 & 315 \\ \hline \end{array} \][/tex]

### Probabilities
- Total number of flowers: 315
- Total number of yellow flowers: 135
- Total number of roses: 105
- Total number of hibiscus: 210
- Total number of red flowers: 120
- Total number of pink flowers: 60

#### Calculation of Probabilities:
1. [tex]\( P(\text{flower is yellow}) \)[/tex]
[tex]\[ P(\text{flower is yellow}) = \frac{135}{315} \approx 0.42857142857142855 \][/tex]

2. [tex]\( P(\text{flower is a rose}) \)[/tex]
[tex]\[ P(\text{flower is a rose}) = \frac{105}{315} \approx 0.3333333333333333 \][/tex]

3. [tex]\( P(\text{flower is a hibiscus}) \)[/tex]
[tex]\[ P(\text{flower is a hibiscus}) = \frac{210}{315} \approx 0.6666666666666666 \][/tex]

4. [tex]\( P(\text{flower is red}) \)[/tex]
[tex]\[ P(\text{flower is red}) = \frac{120}{315} \approx 0.38095238095238093 \][/tex]

### Statements Assessment:
A. [tex]\( P(\text{flower is yellow | flower is a rose}) \neq P(\text{flower is yellow}) \)[/tex]
[tex]\[ P(\text{flower is yellow | flower is a rose}) = \frac{45}{105} \approx 0.42857142857142855 \][/tex]
Compare:
[tex]\[ P(\text{flower is yellow}) \approx 0.42857142857142855 \][/tex]
Both probabilities are equal, so this statement is false.

B. [tex]\( P(\text{flower is a hibiscus | color is red}) = P(\text{flower is a hibiscus}) \)[/tex]
[tex]\[ P(\text{flower is a hibiscus | color is red}) = \frac{80}{120} \approx 0.6666666666666666 \][/tex]
Compare:
[tex]\[ P(\text{flower is a hibiscus}) \approx 0.6666666666666666 \][/tex]
Both probabilities are equal, so this statement is true.

C. [tex]\( P(\text{flower is a rose | color is red}) = P(\text{flower is red}) \)[/tex]
[tex]\[ P(\text{flower is a rose | color is red}) = \frac{40}{120} \approx 0.3333333333333333 \][/tex]
Compare:
[tex]\[ P(\text{flower is red}) \approx 0.38095238095238093 \][/tex]
Probabilities are not equal, so this statement is false.

D. [tex]\( P(\text{flower is a hibiscus | color is pink}) \neq P(\text{flower is a hibiscus}) \)[/tex]
[tex]\[ P(\text{flower is a hibiscus | color is pink}) = \frac{40}{60} \approx 0.6666666666666666 \][/tex]
Compare:
[tex]\[ P(\text{flower is a hibiscus}) \approx 0.6666666666666666 \][/tex]
Both probabilities are equal, so this statement is false.

### Conclusion
The correct statement is B. [tex]\( P(\text{flower is a hibiscus | color is red}) = P(\text{flower is a hibiscus}) \)[/tex].