Simplify [tex]$5 x \cdot \frac{1}{x^{-7}} \cdot x^{-2}$[/tex]

A. [tex]$5 x$[/tex]

B. [tex][tex]$5 x^{-6}$[/tex][/tex]

C. [tex]$5$[/tex]

D. [tex]$5 x^6$[/tex]



Answer :

Sure, let's simplify the expression [tex]\( 5 x \cdot \frac{1}{x^{-7}} \cdot x^{-2} \)[/tex] step-by-step.

1. Initial Expression:

[tex]\[ 5 x \cdot \frac{1}{x^{-7}} \cdot x^{-2} \][/tex]

2. Handling the Fraction:

Recall that [tex]\(\frac{1}{x^{-7}}\)[/tex] can be rewritten using the property of exponents [tex]\(\frac{1}{x^{-a}} = x^a\)[/tex]. Therefore,

[tex]\[ \frac{1}{x^{-7}} = x^{7} \][/tex]

3. Substitute and Combine:

Now substitute [tex]\(x^7\)[/tex] back into the original expression:

[tex]\[ 5 x \cdot x^7 \cdot x^{-2} \][/tex]

4. Combining Exponents:

Use the property of exponents [tex]\(x^a \cdot x^b = x^{a+b}\)[/tex]:

- Combine the exponents [tex]\(1\)[/tex] (from [tex]\(5x\)[/tex]), [tex]\(7\)[/tex], and [tex]\(-2\)[/tex]:

[tex]\[ 5 x^{1 + 7 - 2} \][/tex]

Simplifying the exponent:

[tex]\[ 5 x^{6} \][/tex]

5. Final Simplified Expression:

[tex]\[ 5 x^{6} \][/tex]

Therefore, the simplified expression is [tex]\(5 x^6\)[/tex].