The rate constant, [tex]k[/tex], for a first-order reaction is equal to [tex]4.2 \times 10^{-4} \, s^{-1}[/tex]. What is the half-life for the reaction?

A. [tex]2.9 \times 10^{-4} \, s[/tex]
B. [tex]1.2 \times 10^3 \, s[/tex]
C. [tex]2.4 \times 10^3 \, s[/tex]
D. [tex]1.7 \times 10^3 \, s[/tex]



Answer :

To determine the half-life of a first-order reaction given the rate constant [tex]\( k = 4.2 \times 10^{-4} \, \text{s}^{-1} \)[/tex], we can use the half-life formula for a first-order reaction, which is:

[tex]\[ t_{1/2} = \frac{\ln(2)}{k} \][/tex]

Here, [tex]\( \ln(2) \)[/tex] is the natural logarithm of 2, which is approximately 0.693.

1. Calculate the half-life:

[tex]\[ t_{1/2} = \frac{0.693}{4.2 \times 10^{-4} \, \text{s}^{-1}} \][/tex]

2. Simplify the division:

[tex]\[ t_{1/2} = \frac{0.693}{4.2 \times 10^{-4}} \][/tex]

3. Perform the calculation:

[tex]\[ t_{1/2} \approx 1650.3504299046315 \, \text{s} \][/tex]

So the half-life of the reaction is approximately [tex]\( 1650.35 \, \text{s} \)[/tex].

4. Compare this value with the given options:

- [tex]\( 2.9 \times 10^{-4} \, \text{s} \)[/tex] is way too small.
- [tex]\( 1.2 \times 10^3 \, \text{s} \)[/tex] is 1200 seconds, which is smaller but closer.
- [tex]\( 2.4 \times 10^3 \, \text{s} \)[/tex] is 2400 seconds, which is larger.
- [tex]\( 1.7 \times 10^3 \, \text{s} \)[/tex] is 1700 seconds, which is very close.

Therefore, the closest given option to our calculated half-life is [tex]\( 1.7 \times 10^3 \, \text{s} \)[/tex].

So, the half-life for the reaction is approximately [tex]\( 1.7 \times 10^3 \, \text{s} \)[/tex].