The temperature on Saturday was [tex]6 \frac{1}{2}^{\circ} C[/tex]. On Sunday, it became [tex]3 \frac{3}{4}^{\circ} C[/tex] colder. What was the temperature on Sunday?

A. [tex]2.75^{\circ} C[/tex]
B. [tex]6.7^{\circ} C[/tex]
C. [tex]9.75^{\circ} C[/tex]
D. [tex]10.25^{\circ} C[/tex]



Answer :

To determine the temperature on Sunday, let's follow the step-by-step approach to solving the problem.

1. Understand the given information:
- Temperature on Saturday: [tex]\( 6 \frac{1}{2}^\circ C \)[/tex]
- Temperature decrease on Sunday: [tex]\( 3 \frac{3}{4}^\circ C \)[/tex]

2. Convert the mixed numbers to improper fractions to simplify calculations:
- For [tex]\( 6 \frac{1}{2}^\circ C \)[/tex]:
[tex]\[ 6 \frac{1}{2} = 6 + \frac{1}{2} = \frac{12}{2} + \frac{1}{2} = \frac{12 + 1}{2} = \frac{13}{2} \][/tex]
- For [tex]\( 3 \frac{3}{4}^\circ C \)[/tex]:
[tex]\[ 3 \frac{3}{4} = 3 + \frac{3}{4} = \frac{12}{4} + \frac{3}{4} = \frac{12 + 3}{4} = \frac{15}{4} \][/tex]

3. Find a common denominator to subtract the fractions:
- Converting [tex]\( \frac{13}{2} \)[/tex] to a fraction with a denominator of 4:
[tex]\[ \frac{13}{2} = \frac{13 \times 2}{2 \times 2} = \frac{26}{4} \][/tex]

4. Subtract the fractions to find the temperature on Sunday:
[tex]\[ \frac{26}{4} - \frac{15}{4} = \frac{26 - 15}{4} = \frac{11}{4} \][/tex]

5. Convert the resulting fraction [tex]\(\frac{11}{4}\)[/tex] back to a decimal:
[tex]\[ \frac{11}{4} = 2.75 \][/tex]

Therefore, the temperature on Sunday was [tex]\(2.75^\circ C\)[/tex].

The correct answer is:
A. [tex]\(2.75^\circ C\)[/tex]