Select the correct answer.

Which of the following functions is the inverse of this function?
[tex] f(x)=\frac{x+2}{7} [/tex]

A. [tex] p(x)=7x-2 [/tex]
B. [tex] q(x)=\frac{-x+2}{7} [/tex]
C. [tex] r(x)=\frac{7}{x+2} [/tex]
D. [tex] s(x)=2x+7 [/tex]



Answer :

To determine the inverse of the function [tex]\( f(x) = \frac{z+2}{7} \)[/tex], let's follow a systematic approach:

1. Rewrite the function with [tex]\( y \)[/tex] instead of [tex]\( f(x) \)[/tex]:
[tex]\[ y = \frac{z+2}{7} \][/tex]

2. Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to find the inverse. If [tex]\( y = f(x) \)[/tex], we swap them to get [tex]\( x = f^{-1}(y) \)[/tex]:
[tex]\[ x = \frac{y+2}{7} \][/tex]

3. Solve for [tex]\( y \)[/tex] to express the inverse function:
[tex]\[ x = \frac{y+2}{7} \][/tex]
Multiply both sides by 7 to isolate [tex]\( y + 2 \)[/tex]:
[tex]\[ 7x = y + 2 \][/tex]
Subtract 2 from both sides:
[tex]\[ 7x - 2 = y \][/tex]

Thus, the inverse function is:
[tex]\[ y = 7x - 2 \][/tex]

Hence, the correct answer is:
[tex]\[ \boxed{A \text{. } p(x) = 7x - 2} \][/tex]