The equation [tex]\cos^{-1}\left(\frac{3.4}{10}\right)=x[/tex] can be used to determine the measure of angle BAC.

What is the degree measure of angle BAC? Round to the nearest whole degree.

A. [tex]19^{\circ}[/tex]
B. [tex]20^{\circ}[/tex]
C. [tex]70^{\circ}[/tex]
D. [tex]71^{\circ}[/tex]



Answer :

To find the degree measure of angle [tex]\( \angle BAC \)[/tex], we start with the given equation [tex]\(\cos ^{-1}\left(\frac{3.4}{10}\right) = x\)[/tex]. Here are the steps we take:

1. Calculate the ratio inside the arccos function:
[tex]\[ \frac{3.4}{10} = 0.34 \][/tex]

2. Apply the arccos function to this ratio to find the angle [tex]\( x \)[/tex] in radians:
[tex]\[ x = \cos^{-1}(0.34) \][/tex]

3. Convert this angle from radians to degrees:

Recall the conversion factor between degrees and radians:
[tex]\[ x \text{ (in degrees)} = x \text{ (in radians)} \times \left(\frac{180}{\pi}\right) \][/tex]

4. Calculate the angle in degrees:
[tex]\[ x \approx 70.1231^\circ \][/tex]

5. Round the angle to the nearest whole degree:
[tex]\[ x \approx 70^\circ \][/tex]

Therefore, the measure of angle [tex]\( \angle BAC \)[/tex], when rounded to the nearest whole degree, is [tex]\( 70^\circ \)[/tex].

The correct option is:

[tex]\[ 70^\circ \][/tex]