One zero of the polynomial function [tex]$f(x)=x^3-9x^2+20x$[/tex] is [tex]$x=0$[/tex]. What are the other zeros of the polynomial function?

A. [tex]0, -5, -4[/tex]
B. [tex]0, -5, 4[/tex]
C. [tex]0, 5, -4[/tex]
D. [tex]0, 5, 4[/tex]



Answer :

To determine the zeros of the polynomial function [tex]\( f(x) = x^3 - 9x^2 + 20x \)[/tex], we need to find the values of [tex]\( x \)[/tex] where [tex]\( f(x) = 0 \)[/tex].

We start with the given polynomial:
[tex]\[ f(x) = x^3 - 9x^2 + 20x. \][/tex]

To find the zeros, we set the polynomial equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x^3 - 9x^2 + 20x = 0. \][/tex]

First, we can factor out the common term [tex]\( x \)[/tex]:
[tex]\[ x(x^2 - 9x + 20) = 0. \][/tex]

This gives us one zero immediately:
[tex]\[ x = 0. \][/tex]

Next, we need to solve the quadratic equation [tex]\( x^2 - 9x + 20 = 0 \)[/tex] for the remaining zeros. We can factor the quadratic expression:
[tex]\[ x^2 - 9x + 20 = (x - 4)(x - 5). \][/tex]

Setting each factor equal to zero, we solve for [tex]\( x \)[/tex]:
[tex]\[ x - 4 = 0 \quad \Rightarrow \quad x = 4, \][/tex]
[tex]\[ x - 5 = 0 \quad \Rightarrow \quad x = 5. \][/tex]

Thus, the zeros of the polynomial function [tex]\( f(x) = x^3 - 9x^2 + 20x \)[/tex] are [tex]\( x = 0 \)[/tex], [tex]\( x = 4 \)[/tex], and [tex]\( x = 5 \)[/tex].

So, the correct answer is:
[tex]\[ 0, 5, 4. \][/tex]