Identify the zeros of [tex]$f(x)=(x-7)(x+4)(3x-2)$[/tex].

A. [tex]4, \frac{2}{3}, 7[/tex]
B. [tex]-4, \frac{2}{3}, 7[/tex]
C. [tex]-4, -\frac{2}{3}, -7[/tex]
D. [tex]-4, \frac{2}{3}, -7[/tex]



Answer :

To identify the zeros of the function [tex]\( f(x) = (x-7)(x+4)(3x-2) \)[/tex], we need to set the function equal to zero and solve for [tex]\( x \)[/tex].

A function equals zero when any of its factors equal zero. The factors of [tex]\( f(x) \)[/tex] are [tex]\((x-7)\)[/tex], [tex]\((x+4)\)[/tex], and [tex]\((3x-2)\)[/tex].

We solve for [tex]\( x \)[/tex] in each of these factors:

1. First factor:
[tex]\[ x - 7 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = 7 \][/tex]

2. Second factor:
[tex]\[ x + 4 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = -4 \][/tex]

3. Third factor:
[tex]\[ 3x - 2 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ 3x = 2 \implies x = \frac{2}{3} \][/tex]

The zeros of the function [tex]\( f(x) = (x-7)(x+4)(3x-2) \)[/tex] are [tex]\( x = 7 \)[/tex], [tex]\( x = -4 \)[/tex], and [tex]\( x = \frac{2}{3} \)[/tex].

Therefore, the correct answer from the given choices is:

[tex]\[ -4, \frac{2}{3}, 7 \][/tex]