Página Principal Área personal Mis cursos
Atrás
Pregunta 1

¿Cómo se expresa [tex]$4^2 + 4^2 + 4^2 + 4^2$[/tex] como potencia de 4?

A. [tex]$4^2 + 4^4$[/tex]
B. [tex][tex]$4^2 + 4^2$[/tex][/tex]
C. [tex]$4^3$[/tex]
D. [tex]$4^4$[/tex]



Answer :

Of course! Let's solve the problem step-by-step.

We want to express the sum of four terms of [tex]\(4^2\)[/tex] as a single power of 4. Here is how to do that:

1. Understand the initial expression:
The given expression is [tex]\(4^2 + 4^2 + 4^2 + 4^2\)[/tex].

2. Combine like terms:
Since there are four identical terms of [tex]\(4^2\)[/tex], we can factor out [tex]\(4^2\)[/tex] as follows:
[tex]\[ 4^2 + 4^2 + 4^2 + 4^2 = 4 \times 4^2 \][/tex]

3. Use properties of exponents:
Recall that [tex]\(4^1 = 4\)[/tex]. So we can rewrite the expression [tex]\(4 \times 4^2\)[/tex] using exponent rules. Specifically, [tex]\(a^m \times a^n = a^{m+n}\)[/tex].
[tex]\[ 4 \times 4^2 = 4^1 \times 4^2 \][/tex]

4. Combine the exponents:
According to the rules of exponents [tex]\((a^m \times a^n = a^{m+n})\)[/tex],
[tex]\[ 4^1 \times 4^2 = 4^{1+2} \][/tex]
Simplifying the exponent,
[tex]\[ 4^{1+2} = 4^3 \][/tex]

Therefore, the expression [tex]\(4^2 + 4^2 + 4^2 + 4^2\)[/tex] can be expressed as [tex]\(4^3\)[/tex].

Thus, the correct answer is:

d. [tex]\(4^3\)[/tex]