Select the correct answer.

Which expression is equivalent to [tex]\sqrt[3]{27 x}+\sqrt[3]{x}[/tex], if [tex]x \neq 0[/tex]?

A. [tex]4 \sqrt[3]{x}[/tex]

B. [tex]\sqrt[3]{28 x}[/tex]

C. [tex]3 \sqrt[3]{x}[/tex]

D. [tex]4 \sqrt[3]{x^2}[/tex]



Answer :

To solve the problem, we need to simplify the given expression [tex]\(\sqrt[3]{27 x} + \sqrt[3]{x}\)[/tex].

1. Start by simplifying [tex]\(\sqrt[3]{27 x}\)[/tex]:
- Notice that [tex]\(27\)[/tex] is a perfect cube because [tex]\(27 = 3^3\)[/tex].
- Therefore, [tex]\(\sqrt[3]{27 x}\)[/tex] can be written as [tex]\(\sqrt[3]{27} \cdot \sqrt[3]{x}\)[/tex].

2. Knowing that [tex]\(\sqrt[3]{27} = 3\)[/tex], we can simplify this to:
[tex]\[ \sqrt[3]{27 x} = 3 \sqrt[3]{x} \][/tex]

3. Now we have the expression simplified as:
[tex]\[ \sqrt[3]{27 x} + \sqrt[3]{x} = 3 \sqrt[3]{x} + \sqrt[3]{x} \][/tex]

4. Combine like terms:
[tex]\[ 3 \sqrt[3]{x} + \sqrt[3]{x} = 4 \sqrt[3]{x} \][/tex]

Thus, the expression [tex]\(\sqrt[3]{27 x} + \sqrt[3]{x}\)[/tex] is equivalent to [tex]\(4 \sqrt[3]{x}\)[/tex].

The correct answer is:
A. [tex]\(4 \sqrt[3]{x}\)[/tex]