Find the value of the formula [tex]$T=\frac{(A+B) H}{4}$[/tex] for [tex]$A=3.22$[/tex], [tex][tex]$B=7.15$[/tex][/tex], and [tex]$H=4.6$[/tex].

The value of the formula [tex]$T=\frac{(A+B) H}{4}$[/tex] for [tex][tex]$A=3.22$[/tex][/tex], [tex]$B=7.15$[/tex], and [tex]$H=4.6$[/tex] is [tex]\square[/tex].

(Round to the nearest whole number as needed.)



Answer :

To find the value of the formula [tex]\( T = \frac{(A + B) H}{4} \)[/tex] where [tex]\( A = 3.22 \)[/tex], [tex]\( B = 7.15 \)[/tex], and [tex]\( H = 4.6 \)[/tex], we will follow these steps:

1. Calculate [tex]\( A + B \)[/tex]:
[tex]\[ A + B = 3.22 + 7.15 = 10.37 \][/tex]

2. Multiply the sum of [tex]\( A + B \)[/tex] by [tex]\( H \)[/tex]:
[tex]\[ (A + B) \times H = 10.37 \times 4.6 = 47.702 \][/tex]

3. Divide the result by 4:
[tex]\[ \frac{(A + B) \times H}{4} = \frac{47.702}{4} = 11.9255 \][/tex]

4. Round the result to the nearest whole number:
[tex]\[ 11.9255 \approx 12 \][/tex]

So, the value of the formula [tex]\( T = \frac{(A+B) H}{4} \)[/tex] for [tex]\( A = 3.22 \)[/tex], [tex]\( B = 7.15 \)[/tex], and [tex]\( H = 4.6 \)[/tex] is [tex]\( 12 \)[/tex] (rounded to the nearest whole number).