To find the value of the formula [tex]\( T = \frac{(A + B) H}{4} \)[/tex] where [tex]\( A = 3.22 \)[/tex], [tex]\( B = 7.15 \)[/tex], and [tex]\( H = 4.6 \)[/tex], we will follow these steps:
1. Calculate [tex]\( A + B \)[/tex]:
[tex]\[
A + B = 3.22 + 7.15 = 10.37
\][/tex]
2. Multiply the sum of [tex]\( A + B \)[/tex] by [tex]\( H \)[/tex]:
[tex]\[
(A + B) \times H = 10.37 \times 4.6 = 47.702
\][/tex]
3. Divide the result by 4:
[tex]\[
\frac{(A + B) \times H}{4} = \frac{47.702}{4} = 11.9255
\][/tex]
4. Round the result to the nearest whole number:
[tex]\[
11.9255 \approx 12
\][/tex]
So, the value of the formula [tex]\( T = \frac{(A+B) H}{4} \)[/tex] for [tex]\( A = 3.22 \)[/tex], [tex]\( B = 7.15 \)[/tex], and [tex]\( H = 4.6 \)[/tex] is [tex]\( 12 \)[/tex] (rounded to the nearest whole number).